

Índice Coples

PRODUCTO	PÁGINA
COMPARACIÓN DE COPLES	C-2
QUADRA-FLEX®	
SELECCIÓN DE ELEMENTOS	
PROCEDIMIENTO DE SELECCIÓN	
ELEMENTOS	C-14
BRIDAS	
BRIDAS ESPACIADORAS SC	C-20 – C-23
INSTALACIÓN	
COPLE DE CADENA DE RODILLOS	
BARRENADOS A LA MEDIDA	
QD	
BUJE TAPER	
SELECCIÓN DE COPLE	
BARRENO PILOTO	
CUBIERTAS	
COPLE DE MORDAZA	
CAPACIDAD DE POTENCIA (HP, CABALLOS DE FUERZA)	
MAZAS ML Y MS	
ELEMENTOS ML Y MS	
Martin FLEX®	
TAMAÑOS DISPONIBLES	
INGENIERÍA	C-32

Comparación de Coples

Coples

Tabla de Comparación

	Elemento de	Potencia (HP) Máxima	RPM	Rango de		neación nitida
Tipo	Conexión	a 100 RPM	Máxima	Barreno	Angular	Paralela
Cadena	Cadena de Rodillos	700	5000	3/8 — 61/8"	2°	.015
Mordaza	Elemento Elastomérico	3.6	3600	1/8 — 25/8"	1°	.015
<i>Martin</i> Flex®	Hule Elastomérico	14.4	4500	3% — 3½"	4°	1/8
Quadra Flex®	Elemento Elastomérico	115	9200	1/2 — 6"	.330°	.062

	Capacidad para	Capacidad para	Temperatura °F / °C		
Tipo	Absorber Impactos	Absorber Vibración	Mínima	Máxima	
Cadena	Ninguna	Ninguna	-30°F / -34°C	225°F / 107°C	
Mordaza	Moderada	Moderada	-60°F / -51°C	250°F / 121°C *1	
<i>Mādi</i> n Flex®	Excelente	Excelente	-45°F / -42°C	210°F / 98°C ★2	
Quadra-Flex®	Excelente	Excelente Moderada	-50°F / -45°C -65°F / -53°C	275°F / 135°C *3 250°F / 121°C *4	

^{★1} Con Elemento de Hytrel®.

^{★2} Con Elemento de Neopreno.

^{★3} Con Elemento de TPR.

^{★4} Con Elemento de EPDM.

Todo lo que Usted Necesita en Coples — Martin lo Tiene

Martin le ofrece dos tipos de coples de mordaza, uno para aplicaciones de mayor potencia y otro totalmente intercambiable.

El cople flexible **Martin-Flex**® transmite suavemente la potencia, compensando al mismo tiempo desalineamientos angulares de hasta 4°, desalineamientos paralelos de 1/8" máximo y de extremo flotante de 5/16". Su diseño en dos bridas permite que la instalación sea fácil y rápida, mientras que el elemento elastomérico es lo suficientemente flexible para absorber impactos y vibración en un amplio rango de temperatura.

Tipo ML

Tipo MS

Martin le ofrece la línea más completa de coples de cadena

BP Barreno Piloto

BSBarreno
Calibrado

TB Buje Taper

QD Buie QD

Aluminio

Plástico

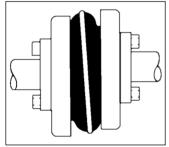
El Cople *Martin* QUADRA-FLEX®. Con un Diseño Probado que Ofrece: Larga Duración, Flexibilidad Torsional, Instalación Fácil y Sencilla y la Capacidad Para Compensar Desalineamiento y Absorber Vibración e Impactos.

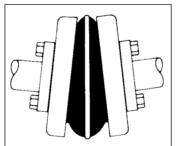
Quadra-Flex® 4 Tipos de Flexión

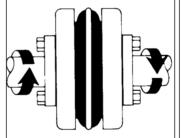
COPLES FLEXIBLES Quadra-Flex®

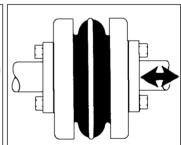
Tamaños en existencia del 3 al 16.

En estilos J, S, B y SC con espaciadores.




Quadra-Flex® 4 Tipos de Flexión




Los Coples *Martin* QUADRA-FLEX®, No Requieren Lubricación, No Necesitan Mantenimiento, de Instalación Fácil y Rápida.

Para aplicaciones en las que exista impacto, vibración y desalineación.

Paralelo

Los coples QUADRA-FLEX® absorben la desalineación paralela sin desgastarse y con una pérdida mínima de energía. El desalineamiento paralelo que se puede compensar varía dependiendo del tamaño del cople y va desde 0.015" para el tamaño 5 hasta 0.062" para el tamaño 16. Esto minimiza las cargas radiales en los rodamientos.

Angular

Debido a la flexibilidad del elemento y a las características de ensamble del mismo, los coples QUADRA-FLEX® pueden compensar fácilmente desalineaciones angulares de hasta 1 grado sin sufrir un desgaste apreciable.

Torsional

Los elementos de los coples QUADRA-FLEX® son elásticos a la torsión y adecuados para absorber impactos y amortiguar vibraciones que de otra forma se transmitirían de un equipo a otro.

Axial

La flexibilidad axial de los elementos del cople QUADRA-FLEX®, permite compensar el extremo flotante de los ejes. Esto ayuda a reducir las cargas de empuje transmitidas a los rodamientos. Los coples QUADRA-FLEX® aceptan desplazamientos axiales de aproximadamente 1/8".

Estilos

Disponible en Tres Estilos

Bridas Tipo J y S

Estas bridas están barrenadas a la medida y fabricadas para instalarlas deslizándolas en ejes de medidas estándar. Están disponibles en inventario para una gran variedad de diámetros de ejes.

Fabricadas de hierro colado de gran resistencia, en tamaños del 6 al 16 y para ensamblarse con bujes QD estándar.

Coples de Desmontaje Rápido

Martin ofrece para el cople con espaciador 4JSC un sistema de ensamble que permite quitar la parte central del espaciador de la misma forma en que se quita para los tamaños 5SC al 14SC, removiendo los 4 tornillos que sujetan cada maza. La sección central de los coples puede ser levantada, dejando expuestos los empaques de la bomba. Las partes planas de las mazas espaciadoras permiten girar los ejes utilizando una llave de tuercas.

Brida Tipo SC con Espaciador

Los coples QUADRA-FLEX® SC con espaciador satisfacen los requerimientos estándar de los fabricantes de bombas. Tenemos bridas con espaciador para tamaños de cople del 4 al 14.

Selección del Elementos

Nomenclatura QUADRA-FLEX®

Bridas

Tipo	Descripción				
J★	J★ Acero sinterizado, barrenado a la medida				
S	Hierro fundido, barrenado a la medida				
В	Hierro fundido, buje QD				
SC	Bridas de cople con espaciador				

^{★ —} El tamaño 6 se suministra en hierro fundido.

Mazas - (Para Bridas SC)

Tipo	Descripción
Н	Maza normal
HS	Maza corta

Elementos

Tipo	Descripción				
JEM	TPR- 1 pieza sólida, hule termoplástico				
JEMS	TPR- 1 pieza bipartida, hule termoplástico				
EM	TPR- 2 piezas con aro retenedor				
E	EPDM- 2 piezas con aro retenedor				
N	NEOPRENO- 2 piezas con aro retenedor				
Н	HYTREL – 1 pieza sólida				
HS	HYTREL – 2 piezas				

Los coples QUADRA-FLEX® vienen en una variedad de estilos y diseños para satisfacer las necesidades específicas de nuestros clientes. Estos diseños incluyen bridas y elementos de varios tipos y materiales. La línea completa de productos incluye 13 tamaños con capacidad máxima de torque de hasta 72,000 lb-pulg.

Al ordenar los coples QUADRA-FLEX® siga el siguiente procedimiento para asegurar que su pedido sea surtido de forma correcta y expedita. Para las bridas de los coples mencione siempre el tamaño seguido de las letras que designan el tipo de brida requerida, indicando al final el diámetro del eje en donde se va a instalar. Para los elementos del cople indique siempre el tamaño seguido de la letra o letras que designan el tipo y el material de construcción requerido. (Refiérase a las tablas en la parte superior de esta página.)

Ejemplo: Brida Tipo J

	<u>Tamaño</u>	<u>Brida</u>	<u>Barreno</u>
5J × ¾"	5	J	3/4"
7S × 30mm	7	S	30mm

Nota: Las bridas con barreno a la medida se suministran con cuñero estándar y dos opresores, a menos que se especifique otra cosa.

Ejemplo: Brida Tipo B

	<u>Tamaño</u>	<u>Brida</u>	<u>Buje</u>
8B — SH	8	В	SH

Nota: El buje SH con el barreno requerido debe ser especificado por separado.

Ejemplo: Elementos

	<u>Tamaño</u>	Estilo y Material
8JEM	8	Sólido, TPR
11E	11	2 Piezas, EPDM

Nota: Los elementos del 3 al 12 se suministrarán en TPR y los elementos del 13 al 16 en EPDM, a menos que se especifique otro material. Vea página C-18.

Ejemplo: Cople espaciador completo

1	6EM	Elemento de 2 piezas tamaño 6 en TPR.
2	6SC35	Bridas para separación de 31/2".
1	6H × 1"	Maza espaciadora tamaño 6
		para barreno de 1".
1	$6H \times 1^{1}/8$ "	Maza espaciadora tamaño 6
		para barreno de 11/8".

Selección de Elementos

Los elementos para coples QUADRA-FLEX® están disponibles en 4 diferentes materiales. Estos materiales son: TPR (hule termoplástico) para los elementos JEM, JEMS, EM; Hule EPDM, para el tipo E; Neopreno para el

tipo N; Hytrel para los tipos H y HS. Para determinar el elemento adecuado para una determinada aplicación, a continuación se indican las características de cada material.

TPR

(Tamaños 3 al 12)

Los coples QUADRA-FLEX® normalmente se suministran con elemento de TPR para los tamaños del 3 al 12. El TPR es un material de uso general que combina las características del EPDM y del Neopreno. Estos elementos operan a temperaturas que van desde -50°F a 275°F (-46°C a 135°C). La flexibilidad torsional es de 15°.

EPDM

(Tamaños 13 al 16)

Los coples QUADRA-FLEX® normalmente se suministran con elemento de hule EPDM para los tamaños del 13 al 16. El EPDM es un material de uso general que puede operar a temperaturas que van desde -30°F a 275° F (-34°C a 135°C). La flexibilidad torsional es de 15°.

NEOPRENO* (Tamaños 11 al 16)

Los elementos de Neopreno también están disponibles para los tamaños del 11 al 14. Estos elementos tienen una mayor resistencia que el EPDM y son auto-extinguibles. Pueden

auto-extinguibles. Pueden operar a temperaturas que van desde 0°F a 200°F (-18°C a 93°C). La flexibilidad

torsional es de 15°.

HYTREL* (Tamaños 6 al 14)

Los elementos de Hytrel han sido específicamente diseñados para aplicaciones de alto torque. El elemento tipo H transmite aproximadamente 4 veces la potencia que el tamaño equivalente en TPR, EPDM o Neopreno. El Hytrel opera a temperaturas que van desde -65°F a 250° F (-54°C a 121°C). La flexibilidad torsional es de 7°. Nota: No use un elemento de

Nota: No use un elemento de Hytrel como reemplazo de uno de TPR, EPDM o de Neopreno.

Resistencia Química de los Elementos

Resistencia a:	TPR	EPDM	Neopreno★	Hytrel★	Resistencia a:	TPR	EPDM	Neopreno★	Hytrel★
Aceite ASTM No. 1	В	С	Α	Α	Combustible B de referencia ASTM	В	C	С	Α
Aceite ASTM No. 3	В	С	B(158F)	Α	Combustible C de referencia ASTM	В	Х	С	В
Aceite Combustible	В	X	Α	Α	Esteres Fosfatados	Α	Α	С	Α
Aceite Hidráulico	В	N	Α	Α	Fenol	Т	Т	В	С
Aceite Lubricante	В	X	B(158F)	Α	Fluido de prueba de				
Aceite Mineral	В	Х	Α	Α	Hidrocarburos ASTM	N	С	Х	Α
Acetona	Α	Α	В	В	Gasolina	В	B-C	В	Α
Ácido Clorhídrico al 20%	Α	Т	Α	В	Glicerina	Α	Т	A(158F)	Α
Ácido Crómico de 10 a 50%	T	Т	С	N	Glycol Etileno	Α	Α	A(158F)	Α
Ácido Esteárico	T	T	B(158F)	T	Hidróxido de Amonio, solución	Т	Α	A(158F)	Т
Ácido Fosfórico al 20%	Α	T	Т	N	Hidróxido de Sodio, 20%	Α	Α	`A ´	Α
Ácido Nítrico al 10%	Α	Т	В	В	Keroseno	В	Х	В	Т
Ácido Sulfúrico al 50%	Α	Т	A(158F)	Α	Naftalina	В	С	С	Α
Ácido Sulfúrico al 80%	Α	Т	B-C	С	Nitrobenceno	T	Α	С	С
Ácido Tánico al 10%	T	T	A	T	Peróxido de Hidrógeno, 88-1/2%	N	Т	В	Т
Agua	Α	A(158F)	A(212F)	A(158F)	Solución Pickling (20% de ácido				
Alcohol Etílico	Α	Α	A(158F)	Α	nítrico y 4% HF)	N	Х	B-C	Χ
Alcohol Isopropílico	Α	Т	Α	Α	Soluciones Jabonosas	Α	Т	A(158F)	Α
Alcohol Metílico	Α	Т	A(158F)	Α	Solvente Dowtherm A	Х	В	`x ´	N
Amoníaco	В	Т	Α	N	Solventes para Laqueado	Т		С	В
Benceno	С	С	С	В	Tetracloruro de Carbono	Х	С	С	С
Butano	В	В	A	Α	Tolueno	С	С	С	В
Clorobenceno	С	Х	X	Χ	Tricloroetileno	С	Х	С	С
Cloroformo	Χ	С	С	С	Turpentina	В	С	С	N
Combustible A de referencia ASTM	В	С	A	Α	Xileno	С	С	Х	В

A — El fluido tiene poco o ningún efecto.

B — El fluido tiene un efecto moderado.

C — El fluido tiene un efecto severo.

N — No se ha hecho ninguna evaluación.

T — No se dispone de datos; probablemente es compatible.

X — No se dispone de datos; probablemente no es compatible.

[★]Marca registrada de DuPont® .

Procedimiento de Selección

Procedimiento de Selección

Cuando la unidad motriz es un motor eléctrico de velocidad estándar.

Paso 1. Determine el Símbolo de Factor de Servicio (FS) de acuerdo a los equipos listados en la Tabla 1 de la página C-10.

Paso 2. Determine el Factor de Servicio adecuado en la Tabla que se encuentra en la parte superior de la página C-10.

Paso 3. Vaya a las páginas C-12 y C-13 para seleccionar el cople adecuado a la aplicación. Tomando en cuenta la resistencia química del elemento y el ambiente de operación, en la página C-8 seleccione el material del elemento. Encuentre las RPM del motor y en la columna del Factor de Servicio seleccionado en el Paso 2, lea hasta encontrar el renglón de la potencia del motor. El número que se encuentra en la intersección de la columna y del renglón es el tamaño correcto del cople.

Ejemplo: Se necesita acoplar un motor eléctrico estándar de 25 HP, 1750 RPM a un transportador de troncos

- 1.- Símbolo de Factor de Servicio H.
- 2.- Factor de Servicio 2.0.
- Cople tamaño 9 con elemento de TPR o tamaño 6 con elemento de Hytrel.

Paso 4. Seleccione las bridas de las páginas C-13 a C-16. Revise su selección tomando en cuenta los diámetros de los ejes para asegurarse que el cople abre a ese barreno.

Cuando la unidad motriz no es un motor eléctrico o las velocidades son diferentes a las indicadas en las tablas de la página C-11.

Paso 1. Siga los pasos 1 y 2 del procedimiento anterior.

Paso 2. Calcule la potencia a 100 RPM usando la siguiente fórmula:

Potencia a 100 RPM = $\frac{HP \times factor de \ servicio \times 100}{RPM \ del \ Cople}$

Paso 3. Seleccione el tamaño del cople en las tablas 2A y 2C de la página C-11. Encuentre una potencia igual o mayor a la potencia calculada en el paso 2.

Paso 4. Revise el tamaño máximo de barreno en las tablas de dimensiones de las bridas, para asegurarse que los diámetros de los ejes no excedan los valores indicados para el tamaño de cople seleccionado. Si se excede el barreno máximo, seleccione el tamaño superior siguiente que acepte ese barreno. No exceda las RPM máximas para el nuevo tamaño seleccionado.

Ejemplo: Un elevador de cangilones accionado por un motorreductor necesita un cople que transmita 14 HP a 1300 RPM.

- 1. Símbolo de Factor de Servicio M
- 2. Factor de Servicio 1.5
- 3. Potencia a 100 RPM = $\frac{14 \times 1.5 \times 100}{1300}$ = 1.61 HP/100 RPM
- 4. De las tablas de la página C-11. En la columna de 100 RPM la potencia requerida de 1.61 cae entre el cople tamaño 7 (1.2 HP) y el tamaño 8 (1.8 HP). El tamaño correcto es el 8 con elemento de TPR. Revise los tamaños de barrenos para las bridas en las tablas de las páginas C-15 a la C-19.

RPM Máximas y Desalineación Permitida

	RPM	Tipos JEM, JE	MS, EM, E y N	Tipos	H y HS
Tamaño	Máximas	Paralela	Angular	Paralela	Angular
3	9200	.010	.035	_	_
4	7600	.010	.043	_	_
5	7600	.015	.056	_	_
6	6000	.015	.070	.010	.016
7	5250	.020	.081	.012	.020
8	4500	.020	.094	.015	.025
9	3750	.025	.109	.017	.028
10	3600	.025	.128	.020	.032
11	3600	.032	.151	.022	.037
12	2800	.032	.175	.025	.042
13	2400	.040	.195	.030	.050
14	2200	.045	.242	.035	.060
16	1500	.062	.330	_	_

Nota: Los valores indicados en esta Tabla aplican si el torque real transmitido es mayor a ¼ de la capacidad de torque del cople. Para un torque menor reduzca los valores indicados a la mitad.

Factores de Servicio

Factores de Servicio para Coples QUADRA-FLEX®

Símbolo de Factor de Servicio	Motor Eléctrico Torque Estándar	Motor Eléctrico Torque Alto	Turbinas	Motores Reciprocantes
L (ligero)	1.25	1.5	1.0	1.5
M (medio)	1.5	2.0	1.25	2.0
H (pesado)	2.0	2.5	1.5	2.5

_	┌_	ᆸ	_	-4
	12	n	ביו	
	~	u		

Aplicación Símbolos FS	Aplicación	Símbolos FS	Aplicación	Símbolos FS
AGITADORES – Paletas, Hélice, Rosca L	DESCORTEZADOR (mad	•	De concreto, Muller	
ALAMBRE	DINAMÓMETRO		MEZCLADORES DE CONC	
Enrolladora de alambre	DOSIFICADORES (textile	s) L	MOLINO DE CARNE	
Estiradora de alambre	DRAGAS		MOLINO DE RODILLOS	Н
ALIMENTADOR DE DISCO L		M	MOLINOS	
ALIMENTADORES		mbas M	De bolas, de guijarros, de	
Apron, de disco, de banda L		de maniobras M	Para hule	
Helicoidales	•	za de corte H	Secadores y enfriadores	M
Reciprocantes		s H	MOLINOS DE MARTILLOS	
ALIMENTADORES DE QUÍMICOS	EJES EN LÍNEA		Trabajo ligero, intermiten	
(aguas residuales) L	ELEVADOR O TRANSPO		Trabajo pesado, continuo	
AMASADORA M	CANGILONES	М	PRENSA PARA ABRIR LLA	NTAS Y TUBOS L
ASTILLADORAS (papel)	ELEVADORES		PRENSAS	
BANCADAS, transmisión principal	De cangilones	М	De impresión, troquelado	, para papel M
BASTIDORES (textiles)	De carga, de pasajero	s, de servicio H	De ladrillos, briqueteador	a
BANCADAS, transmisión principal		L	PULVERIZADORES	
BLANQUEADOR (papel) L	EMBOBINADORAS (pape	el, textiles y alambre) M	Molino de martillos – uso	pesado H
BOMBAS	ENFRIADORES (aceite)	M	Molino de martillos – uso	ligero
Centrífugas, axiales L	ENJABONADORAS (text	es) L	QUEBRADORAS	
De engranes, lóbulos, de alabe	ENRISTRADORES (pape		Caña de azúcar, piedra,	minerales H
Reciprocantes - de accionamiento	ESCALERAS ELÉCTRIC	\SL	QUEBRADORAS DE MINEI	RALES H
sencillo o doble	EXTRUSORES (metal)	H	REMOLCADOR DE BARCA	ZAS H
CABRESTANTEM	FILTROS PARA ACEITE	A PRESIÓN	RODILLO DE SUCCIÓN (pa	npel)
CALANDRIAS	GENERADORES		ROLADORA (metal)	M
Calandrias (papel)	De carga uniforme	L	SECADORES ROTATORIO	S M
Súper calandrias (papel, hule)	De carga variable	M	SIERRA CIRCULAR	M
CALDERAS (destilación) L	Para soldadoras	H	SIERRA DE BANDA	M
CANTEADOR (madera)	GRÚAS		SOPLADORES	
CARDAS (textiles)	Trabajo normal	M	Centrífugos, de alabe	L
CARGADORES DE CARBÓN L	Trabajo pesado	H	De lóbulos	M
CARRETE, EMBOBINADOR (papel)	GRÚAS Y POLIPASTOS		SOPLADORES CENTRÍFU	GOS,
CENTRIFUGAS (textiles)	Para minas, trabajo pe	sado H	COMPRESORES VENTI	LADORES Y
CEPILLO (metal o madera)	GRÚAS Y POLIPASTOS	M	BOMBAS	L
CILINDROS (papel)	HIDROPULPER (papel).	M	TAMBOR GIRATORIO	H
CLARIFICADOR O CLASIFICADOR L	HORNO PARA CEMENT	D H	TELARES (textiles)	M
COCEDORES (cervecerías, destilación,	HORNO ROTATORIO	H	TRANSPORTADOR DE AS	ERRÍN L
alimentos)	JORDAN (papel)	H	TRANSPORTADOR DE HO	RNOL
COLECTORES (aguas residuales)L	LAVADORA Y ESPESAD	ORA (papel) M	TRANSPORTADOR DE TR	ONCOS (madera) H
COMPRESORES	LAVADORAS Y SECADO	RAS DE ROPA H	TRANSPORTADORES	
Centrífugos L	LUSTRADOR (textiles)	L	Apron, de banda, de rast	
De lóbulos o de tornillo L	MACERADORES (destila	ción) L	De Cangilones	M
Reciprocantes*	MALACATES	M	Helicoidal, para horno	L
CORTADORAS (papel)	MAQUINARIA PARA COI	IVERSIÓN (papel) M	TRANSPORTADORES DE	MADERA (madera) . M
CORTADORAS (metal)	MAQUINARIA PARA EMI	BOTELLAR L	TRANSPORTADORES HEL	ICOIDALES L
CRIBA DE BARRAS (aguas residuales)L	MAQUINARIA PARA FOR	RMAR METALES M	TRITURADOR DE PULPA (papel)
CRIBAS (Grizzly)	MAQUINARIA PARA LLA	NTAS H	VENTILADORES	
CRIBAS	MAQUINARIA PARA MAI	DERA L	Centrífugos	L
Para lavado de aire, agua L	MAQUINARIA PARA MAI	IEJO DE ARCILLA M	De tiro forzado, para min	as, industriales M
Rotatorias para carbón o arena	MAQUINAS HERRAMIEN	TAS,	De torre de enfriamiento	
Vibratorias	TRANSMISIÓN PRINC	CIPAĹ	VENTILADORES DE TORR	
CRIBAS DE ESCURRIMIENTO	MESAS DE SELECCIÓN	(madera) M	ENFRIAMIENTO	Н
(aguas residuales)	MEZCLADOR DE ARCIL		VOLTEADOR DE CARROS	
CUCHILLAS PARA CAÑA (azúcar)	MEZCLADORES			
DESARENADORES (aguas residuales)L	Banbury	H		
(agado 100,000) 111111	,			

* Consulte a Martin

Capacidad de los Coples

Capacidad de los Coples

Tabla 2A

Hule Termoplástico (TPR), EPDM y Neopreno

Tamaño de	Material			Capacidad, HP a la Velocidad Indicada	a		Capacidad de Torque	Factor de Rigidez Torsional	RPM
Cople	del Elemento	100	860	1160	1750	3500	(lb-pulg)	• (lb-pulg/radianes)	Máximas
3	TPR	.10	.8	1.1	1.7	3.3	60	229	9200
4	TPR	.19	1.6	2.2	3.3	6.7	120	458	7600
5	TPR	.38	3.3	4.4	6.7	13.0	240	916	7600
6	TPR	.71	6.1	8.3	12.5	25.0	450	1718	6000
7	TPR	1.20	10.0	13.0	20.0	40.0	725	2769	5250
8	TPR	1.80	16.0	20.0	32.0	63.0	1135	4335	4500
9	TPR	2.80	25.0	33.0	50.0	100.0	1800	6875	3750
10	TPR	4.60	39.0	53.0	80.0	160.0	2875	10980	3600
11	TPR	7.20	62.0	83.0	126.0	252.0	4530	17300	3600
12	TPR	11.40	98.0	132.0	200.0	_	7200	27500	2800
13	EPDM y Neopreno	18.00	155.0	209.0	315.0	_	11350	43350	2400
14	EPDM y Neopreno	28.60	246.0	331.0	500.0	_	18000	68755	2200
16	EPDM	75.00	645.0	870.0	_	_	47250	180480	1500

Tabla 2C Hytrel

Tamaño de	Material			Capacidad, HP a la Velocidad Indicada		Capacidad de Torque	Factor de Rigidez Torsional	RPM	
Cople	del Elemento	100	860	1160	1750	3500	(lb-pulg)	• (lb-pulg/radianes)	Máximas
3∗	HYTREL	_	_	_	_	_	_	_	_
4∗	HYTREL	_	_	_	_	_	_	_	_
5∗	HYTREL	_	_	_	_	_	_	_	_
6	HYTREL	2.9	25.0	33.0	50.0	100.0	1800	10000	6000
7	HYTREL	4.6	39.0	53.0	80.0	160.0	2875	20000	5250
8	HYTREL	7.2	62.0	84.0	126.0	252.0	4530	30000	4500
9	HYTREL	11.4	98.0	132.0	200.0	400.0	7200	47500	3750
10	HYTREL	18.0	155.0	209.0	315.0	630.0	11350	100000	3600
11	HYTREL	28.6	246.0	331.0	500.0	1000.0	18000	125000	3600
12	HYTREL	50.0	430.0	580.0	875.0	_	31500	225000	2800
13	HYTREL	75.0	645.0	870.0	1312.0	_	47268	368900	2400
14	HYTREL	115.0	986.0	1334.0	2013.0	_	72480	593250	2200

<sup>Para estos tamaños los elementos de Hytrel se fabrican bajo pedido. Consulte a Matin.
Los valores indicados son a temperatura ambiente de 75° F (24 °C).</sup>

Tabla de Selección de Elementos

Tabla de Selección para Elementos TPR¹, EPDM y de Neopreno

% 3 3 3 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3			Mot	or a 860 R	PM			Moto	or a 1160	RPM			Mot	or a 1750	RPM			Mot	or a 3500	RPM	
% 3 3 3 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3			Facto	res de Sei	rvicio			Facto	res de Se	rvicio			Facto	ores de Se	rvicio			Facto	res de Se	rvicio	
3 4 4 4 5 3 3 4 4 4 3 3 3 4 4 4 5 5 3 4 4 4 5 5 3 3 4 4 4 5 5 5 5 5 6 6 4 4 5 5 5 6 6 4 4 5 5 5 6 6 6 7 7 5 5 6 6 6 7 7 8 6 6 6 6 7 7 8 6 6 6 7 7 7 8 8 9 6 7 7 7 8 8 9 6 7 7 7 8 8 9 6 6 7 7 7 5 5 5 6 6 6 7 7 7 8 8	HP	1.0	1.25	1.5	2.0	2.5	1.0	1.25	1.5	2.0	2.5	1.0	1.25	1.5	2.0	2.5	1.0	1.25	1.5	2.0	2.5
1 4 4 4 5 5 5 3 4 4 4 5 5 3 4 4 4	1/2	3	3	3	4	4	3	3	3	3	4	3	3	3	3	3		_	_	_	_
1½ 4 5 5 5 6 6 4 4 5 5 5 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 7 5 5 5 6 6 6 6	3/4	3	4	4	4	5	3	3	4	4	4	3	3	3	3	4	3	3	3	3	3
2 5 5 5 6 6 4 5 5 6 4 4 4 5 5 3 3 3 4 4 3 5 6 6 6 7 7 5 5 6 6 6 7 7 5 5 6 6 6 4 4 5 5 5 6 6 6 4 4 5 5 5 6 6 6 7 7 5 5 5 6 6 6 4	1	4	4	4	5	5	3	4	4	4	5	3	3	3	4	4	3	3	3	3	3
3 5 6 6 6 7 5 5 6 6 6 4 5 5 6 3 4 4 4 5 5 6 6 6 7 7 7 8 8 9 6 7 7 8 8 9 6 7 7 8 8 9 6 7 7 8 8 9 6 6 6 7 7 5 6	1½	4	5	5	5	6	4	4	5		5	3	4	4	4			3	3	3	4
5 6 6 7 7 8 6 6 6 7 7 5 5 6 6 6 4 4 5 5 5 7½ 7 7 8 8 9 6 7 7 8 8 9 9 7 7 8 8 9 9 10 10 8 8 9 9 10 10 11 8 9 9 10 10 11 11 8 9 9 10 10 11 11 8 9 9 10 10 7 7 8 8 9 9 6 6 6 7 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 6 6 7 7 7 8 8 8 9 9 10 10	2	5	5	5	6	6	4	5	5	5	6	4	4	4	5	5	3	3	3	4	4
7½ 7 7 8 8 9 6 7 7 8 8 6 6 6 7 7 5 5 5 5 6 6 6 7 7 7 5 5 5 6 6 6 6 7 7 7 8 8 9 9 10 10 10 11 8 8 9 9 10 7 7 8 8 9 9 10 10 11 11 8 9 9 10 10 11 11 18 9 9 10 10 7 7 8 8 9 9 10 6 6 7 7 8 8 9 9 10 6 6 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 10 7 <td>3</td> <td>5</td> <td>6</td> <td>6</td> <td>6</td> <td>7</td> <td>5</td> <td>5</td> <td>6</td> <td>6</td> <td>6</td> <td>4</td> <td>5</td> <td>5</td> <td>5</td> <td>6</td> <td>3</td> <td>4</td> <td>4</td> <td>4</td> <td>5</td>	3	5	6	6	6	7	5	5	6	6	6	4	5	5	5	6	3	4	4	4	5
10 7 8 8 9 9 7 7 8 8 9 6 6 7 7 8 5 5 6 6 6 7 7 8 5 5 6 6 6 7 7 7 8 8 9 9 10 10 7 7 8 8 9 6 6 6 7 7 7 20 9 9 10 10 11 11 19 9 10 10 11 8 8 9 9 10 6 6 7 7 8 8 9 9 10 6 6 7 7 8 8 9 9 10 6 6 7 7 8 8 8 9 9 10 10 7 7 8 8 8 9 9 10 10 11	5	6	6	7	7	8	6	6	6	7	7	5	5	6	6	6	4	4	5	5	5
15 8 9 9 10 10 8 8 9 9 10 7 7 8 8 9 6 6 6 6 7 7 20 9 9 10 10 11 11 8 9 9 10 10 7 7 8 8 9 9 6 6 7 7 7 8 8 9 9 10 6 7 7 7 8 8 9 9 10 6 7 7 8 8 9 9 10 6 7 7 8 8 9 9 10 6 7 7 8 8 9 9 10 6 6 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 10 11 11 11 11 <td>7½</td> <td>7</td> <td>7</td> <td>8</td> <td>8</td> <td>9</td> <td>6</td> <td>7</td> <td>7</td> <td>8</td> <td>8</td> <td>6</td> <td>6</td> <td>6</td> <td>7</td> <td>7</td> <td>5</td> <td>5</td> <td>5</td> <td>6</td> <td>6</td>	7½	7	7	8	8	9	6	7	7	8	8	6	6	6	7	7	5	5	5	6	6
20 9 9 10 10 11 8 9 9 10 10 7 8 8 9 9 6 6 7 7 8 8 30 10 10 11 11 12 9 10 10 11 11 12 9 10 10 11 11 12 9 10 10 11 11 12 9 10 10 11 11 12 12 10 10 11 11 12 12 10 10 11 11 12 12 10 10 11 11 12 9 9 10 10 11 7 8 8 9 9 10 10 11 11 12 12 13 13 11 11 11 12 12 13 13 14 14 12 12 13 13 14		7	8	8	9		7	7	8		-	_		7	7	8		5	6		
25 9 10 10 11 11 9 9 10 10 11 8 8 9 9 10 6 7 7 8 8 9 9 10 6 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 10 7 7 8 8 9 9 10 10 11 7 7 8 8 9 9 10 10 11 11 12 12 13 13 11 11 12 12 13 13 14 11 12 12 13 13 14 11 12 12 13 13 14 11 11 12 12 13	15	8	9	9	10	10	8	8	9	9	10	7	7	8	8	9	6	6	6	7	7
30	20	9	9	10	10	11	8	9	9	10	10	7	8	8	9	9	6	6	7	7	8
40 10 11 11 12 12 10 10 11 11 12 9 9 10 10 11 7 8 8 9 9 10 10 11 7 8 8 9 9 10 10 11 11 7 8 8 9 9 10 10 11 11 11 12 12 13 13 11 11 11 12 12 13 13 14 11 12 12 13 13 14 11 12 12 13 10 11 11 12 8 9 9 10 10 75 12 12 13 13 14 14 12 12 13 13 10 11 11 12 29 9 10 10 11 11 11 12 21 3 10 11 11 <td>25</td> <td>9</td> <td>10</td> <td>10</td> <td>11</td> <td>11</td> <td>9</td> <td>9</td> <td>10</td> <td>10</td> <td>11</td> <td>8</td> <td>8</td> <td>9</td> <td>9</td> <td>10</td> <td>6</td> <td>7</td> <td>7</td> <td>8</td> <td>8</td>	25	9	10	10	11	11	9	9	10	10	11	8	8	9	9	10	6	7	7	8	8
50 11 11 12 12 13 10 11 11 12 12 9 10 10 11 11 8 8 9 9 10 60 11 12 12 13 13 11 11 12 12 13 10 10 11 11 12 8 9 9 10 10 75 12 12 13 13 14 11 12 12 13 13 9 10 10 100 12 13 13 14 14 12 12 13 13 14 14 10 11 11 12 12 9 9 10 10 11 100 12 13 13 14 14 11 11 12 12 13 13 10 10 11 11 125 13 13	30	10	10	11	11	12	9	10	10	11	11	8	9	9	10	10	7	7	8	8	9
60 11 12 12 13 13 11 11 12 12 13 10 10 11 11 12 8 9 9 10 10 75 12 12 13 13 14 11 12 12 13 13 14 11 12 12 13 13 14 14 14 12 12 13 13 14 11 12 12 13 13 14 14 12 12 13 13 14 11 11 11 11 12 12 9 9 10 10 11 100 12 13 13 14 14 12 12 13 13 14 11 11 12 12 13 13 10 10 11 11 125 13 13 14 14 16 16 16 13		1					-			l							-	_			
75 12 12 13 13 14 11 12 12 13 13 10 11 11 12 12 9 9 10 10 11 100 12 13 13 14 14 12 12 13 13 14 11 12 12 13 9 10 10 11 11 12 12 13 9 10 10 11 11 12 12 13 9 10 10 11 11 12 12 13 13 14 14 14 16 16 13 13 14 14 11 12 12 13 13 10 10 11 11 12 12 13 13 14 14 16 16 16 16 13 14 14 16 16 12 12 13 13 14 14 11	50	11	11	12	12	13	10	11	11	12	12	9	10	10	11	11	8	8	9	9	10
100 12 13 13 14 14 12 12 13 13 14 11 11 12 12 13 9 10 10 11 11 125 13 13 14 14 14 14 14 11 12 12 13 13 10 10 11 11 11 12 12 13 13 10 10 11 11 11 12 12 13 13 10 10 11 11 11 12 12 13 13 10 10 11 11 11 12 12 13 13 14 14 16 16 16 16 16 16 16 16 16 14 14 14 16 16 16 14 14 16 16 16 13 14 14 14 11 11 11 11 11<	60	11	12	12	13	13	11	11	12	12	13	10	10	11	11	12	8	9	9	10	10
125 13 13 14 14 — 12 13 13 14 14 16 16 13 13 14 14 11 12 12 13 13 10 10 11 11 — 200 14 14 16 16 16 16 16 16 16 13 14 14 14 14 14 16 16 16 16 16 16 16 14 14 14 14 16 16 16 14 14 16 16 16 16 14 14 16 16 13 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	75		12	13	13	14	11	12	12	13	13	10	11	11	12	12	9	9	10	10	11
150 13 14 14 16 16 13 13 14 14 16 12 12 13 13 14 10 11 11 — — 200 14 14 16 16 16 13 14 14 16 16 12 13 13 14 14 11 11 — — 250 14 16 16 16 16 14 14 16 16 13 14 14 14 11 — — — 300 16 16 16 16 14 14 16 16 16 13 14 14 — — — — — 350 16 16 16 16 16 16 16 14 14 — — — — — — — — — — — — <td></td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td>11</td>						14					14								10		11
200 14 14 16 16 13 14 14 16 16 12 13 13 14 14 11 11 —																				11	-
250 14 16 16 16 14 14 16 16 16 14 14 16 14	150	13	14	14	16	16	13	13	14	14	16	12	12	13	13	14	10	11	11	_	_
300 16 16 16 16 — 14 16 16 16 16 13 14 14 —	200	14	14	16	16	16	13	14	14	16	16	12	13	13	14	14	11	11	_	_	_
350 16 16 16 16 16 16 16 16 14 14 — <	250	14	16	16	16	16	14	14	16	16	16	13	13	14	14	_	11	—	—	—	—
400 16 16 16 16 16 16 16 14 14 — <t< td=""><td></td><td></td><td></td><td></td><td>16</td><td> —</td><td></td><td colspan="3"></td><td></td><td></td><td></td><td>14</td><td> - </td><td>_</td><td>_</td><td> —</td><td> —</td><td> —</td><td> — </td></t<>					16	—								14	-	_	_	—	—	—	—
450 16 16 — — 16 16 — </td <td></td> <td></td> <td></td> <td></td> <td> -</td> <td> —</td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td></td> <td></td> <td> —</td> <td> -</td> <td>_</td> <td>_</td> <td> -</td> <td> —</td> <td> —</td> <td> - </td>					-	—					16			—	-	_	_	-	—	—	-
500 16 16 - - - 16 16 - <t< td=""><td>400</td><td>16</td><td>16</td><td>16</td><td>_</td><td>_</td><td>16</td><td>16</td><td>16</td><td>16</td><td>_</td><td>14</td><td>14</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></t<>	400	16	16	16	_	_	16	16	16	16	_	14	14	_	_	_	_	_	_	_	_
600 16 - - - - 16 16 - - - - - - - - -	450	16		—	l —	—	16		16	—	_	14	—	—	-	_	_	l —	—	l —	—
700 - - - - - 16 16 - - - - - - - - -	500	16	16	—	—	—	16	16	16	—	_	14	—	—	—	_	_	—	—	—	-
		16	—	—	—	—		-	_	—	_	_	—	—	-	_	_	—	—	—	
		-	—	—	_	—		16	_	—	_	_	—	—	-	_	_	-	—	—	-
	800	-	-	-	-	—	16	-	_	-	_	_	-	-	-	_	_	-	-	-	

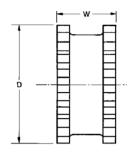
¹ Hule termoplástico.

Precaución: Las aplicaciones que involucran motores y transmisiones reciprocantes están sujetas a velocidades rotacionales críticas que pueden dañar el cople y/o los equipos acoplados. Consulte a **Martin** para este tipo de aplicaciones.

Tabla de Selección de Elementos

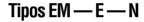
Tabla de Selección de Elementos de Hytrel

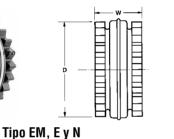
		Mot	or a 860 R	PM			Moto	or a 1160	RPM			Mot	or a 1750 l	RPM			Moto	or a 3500	RPM	
			res de Sei					res de Se					res de Se					res de Sei		
HP	1.0	1.25	1.5	2.0	2.5	1.0	1.25	1.5	2.0	2.5	1.0	1.25	1.5	2.0	2.5	1.0	1.25	1.5	2.0	2.5
1																				
1½																				
2																				
3																				
5																				
7½	6H	6H	6H	6H	6H	_	_	_	_	_	_	_	_	_	_				_	
10	6H	_	—	_	_	_	_	_	_	_	_									
15	6H	6H	6H	7H	7H	6H	6H	6H	6H	7H	6H	6H	6H	6H	6H	_	_	_	_	_
20	6H	6H	7H	7H	8H	6H	6H	6H	7H	7H	6H	6H	6H	6H	6H	_	_	_	_	_
25	6H	7H	7H	8H	8H	6H	6H	7H	7H	8H	6H	6H	6H	6H	7H	_		_		
30	7H	7H	8H	8H	9H	6H	7H	7H	8H	8H	6H	6H	6H	7H	7H	6H	6H	6H	6H	6H
40	7H	8H	8H	9H	9H	7H	7H	8H	8H	9H	6H	6H	7H	7H	8H	6H	6H	6H	6H	6H
50	8H	8H	9H	9H	10H	7H	8H	8H	9H	9H	6H	7H	7H	8H	8H	6H	6H	6H	6H	7H
60	8H	9H	9H	10H	10H	8H	8H	9H	9H	10H	7H	7H	8H	8H	9H	6H	6H	6H	7H	7H
75	9H	9H	10H	10H	11H	8H	9H	9H	10H	10H	7H	8H	8H	9H	9H	6H	6H	7H	7H	8H
100	9H	10H	10H	11H	11H	9H	9H	10H	10H	11H	8H	8H	9H	9H	10H	6H	7H	7H	8H	8H
125	10H	10H	11H	11H	12H	9H	10H	10H	11H	11H	8H	9H	9H	10H	10H	7H	7H	8H	8H	9H
150	10H	11H	11H	12H	12H	10H	10H	11H	11H	12H	9H	9H	10H	10H	11H	7H	8H	8H	9H	9H
200 250	11H	11H 12H	12H 12H	12H 13H	13H 13H	10H 11H	11H	11H 12H	12H 12H	12H 13H	9H	10H 10H	10H 11H	11H 11H	11H 12H	8H 8H	8H 9H	9H 9H	9H	10H 10H
	11H				_		11H				10H	_				_	-	-	10H	
300	12H	12H	13H	13H	14H	11H	12H	12H	13H	13H	10H	11H	11H	12H	12H	9H	9H	10H	10H	11H
350	12H	12H	13H	14H	14H	12H	12H	12H	13H	14H	11H	11H	12H	12H	12H	9H	10H	10H	11H	11H
400 500	12H 13H	13H 13H	13H 14H	14H 14H	14H	12H 12H	12H 13H	13H 13H	13H 14H	14H 14H	11H 11H	11H 12H	12H 12H	12H 13H	13H 13H	9H 10H	10H 10H	10H 11H	11H 11H	11H
600	13H	14H	14H	140		12H	13H	13H	14H	14H —	12H	12H	12H	13H	14H	10H	11H	11H		_
700	14H	14H				13H	13H	14H	14H		12H	12H	13H	14H	14H	11H	11H			
700 800	14H 14H	14H 14H	_			13H 13H	13H 14H	14H 14H	14H —	_	12H 12H	12H	13H 13H	14H 14H	14H 14H	11H	11H 11H	_	_	_
900	14H	14H				14H	14H	14H			13H	13H	14H	14H	14H	11H		_		
1000						14H	14H	—			13H	13H	14H	14H		11H				
											. 511									


Elementos

Elementos QUADRA-FLEX®

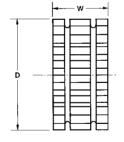
Los elementos flexibles *Martin* se fabrican en 4 materiales, (Hule Termoplástico (TPR), EPDM, Neopreno y Hytrel), y están disponibles en tres estilos. Nuestro elemento EM combina la temperatura de operación del EPDM con la alta resistencia al aceite del Neopreno.




Tipo JEMS

Tipos JEM — JEMS

Los elementos tipo J se fabrican de Hule Termoplástico moldeado (TPR). Están disponibles en dos diseños: Sólido en una sola pieza (JEM) y sólido en una sola pieza con corte (JEMS). El Hule Termoplástico (TPR) puede operar en un amplio rango de temperaturas y al mismo tiempo es resistente al aceite.



Los elementos tipo EM, E y N son de construcción moldeada de dos piezas unidas con un Aro Retenedor. Se fabrican en Hule Termoplástico tipo (TPR), TPR EPDM tipo E y Neopreno tipo N. Se pueden utilizar con cualquier tipo de brida.

Tipo H

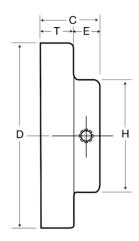
Tipo HS

Tipos H y HS

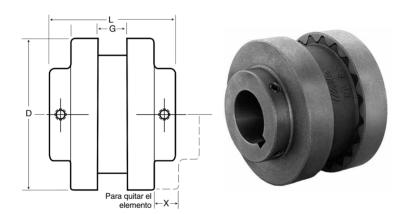
Los elementos H y HS de **Martin** se fabrican en Hytrel. Soportan un mayor torque que los elementos EM estándar. Estos elementos no pueden ser utilizados con las bridas tipo J y B. Los elementos de Hytrel no pueden substituir a los elementos de TPR, EPDM o Neopreno.

Dimensiones (Pulgadas)

Tamaño		Elementos JEM — JEMS			Elementos EM - E - N		ı	Elementos H y H Hytrel•	S
de Cople	D	W	Peso (lb)	D	W	Peso (lb)	D	W	Peso (lb)
3	1%	1	.06	_	_	_	_	_	_
4	2 5/16	1¼	.10	2 5/16	11/4	.11	l —	l —	l —
5	215/16	1%6	.20	215/16	1%6	.25	l —	l —	l —
6	3%	1%	.35	3¾	1%	1.00	3¾	1%	.44
7	411/32	23/16	.50	411/32	23/16	.77	411/32	23/16	.69
8	51/16	2½	.85	51/16	2½	1.4	51/16	2½	1.4
9	6	3	2.00	6	3	2.0	6	3	1.8
10	71/16	37/16	2.20	71/16	31/16	2.90	71/16	37/16	3.00
11	l —	_	_	83/16	4	4.67	8%	4	4.70
12	_	_	_	99 ₁₆	411/16	8.1	9%6	411/16	8.00
13	_	_	_	11%	5½	13.0	11%	5½	11.8
14	l —	_	_	133⁄2	6½	21.1	133/2	6½	19.3
16	_	_	_	172%2	8¾	53 —	_	_	


[•] Los elementos de Hytrel para los tamaños 13 y 14 solo están disponibles en tipo HS.

Bridas Tipo J


Bridas QUADRA-FLEX® Tipo J

Bridas QUADRA-FLEX® Tipo J

Las bridas tipo J de *Martin*, se suministran con barreno a la medida, cuñero estándar y dos opresores.

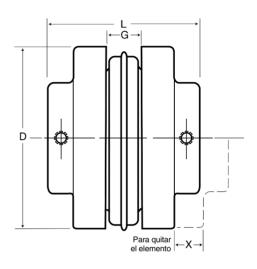
Las bridas tipo J pueden usar los elementos Martin tipo JEM, JEMS o EM.

Nota: Los elementos de Hytrel no deben utilizarse en este tipo de brida.

Dimensiones (Pulgadas)

Tamaño				Dimen	siones				Peso	Barrenos a la Medida•	Barreno	
de Cople	C	D	E	G	Н	L	T	Х	(lb)*	(Pulgadas)	Máximo	Milímetros
3J	13/16	2.062	7/16	3/8	11/4	2	3/8	% ₁₆	.26	3/6**- ½ - 5/6 - 3/4	3/4	
	13/16	2.062	7∕16	%	1½	2	%	%16	.26	7/8	%	
4J	7/6	2.460	7/16	%	1%	2%	7∕16	3/4	.47	1/2 - 5/6 - 3/4 - 7/6 - 15/16 - 1	1	15 20 25
5J	11/16	3.250	15/32	3/4	1%	2%	19/32	31/32	.86	1/2 - 5/6 - 3/4 - 7/8 - 15/16 - 1 - 11/8	1%	
6J	1 1/32	4.000	19/32	7/8	1 15/16	35/16	%	13/32	1.73	% - ¾ - % - ½ - 1		
	11/32	4.000	19/32	%	2½	35/16	%	13/32	1.70	1% - 1% - 1% - 1%	1%	

- Peso aproximado para cada brida.
- El barreno a %" no tiene cuñero. De ser necesario, las bridas J pueden ser rebarrenadas.


Bridas Tipo S

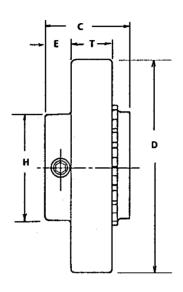
Coples QUADRA-FLEX® Tipo S (Barrenados a la Medida)

Las bridas tipo S están barrenadas a medidas estándar y fabricadas en hierro fundido de alta resistencia. Son de fácil instalación y desmontaje. Las tenemos en existencia para una gran cantidad de diámetros de barreno como se indica en la siguiente página.

Dimensiones

	Diámetro		Barreno (Pulg.))		Maza (pulg.)						
Tamaño de Cople	de Brida (D)	Piloto	Máx.★	Máx.★★	Diámetro (H)	Largo (C)	Proyección (E)	G	L	т	x	Peso (Ib)•
5S	3.250	1/2	1%6	1¼	1%	1%	29/64	3/4	213/16	19/32	31/32	1.0
	4.000	%	1 %6	1½	2½	1%	17/32	7∕6	3½	3/4	13/32	2.1
6S	4.000	%	_	1%	2½	1%6	13/16	%	4	3/4	13/32	2.1
7S	4.625	5/8	1%	1%	213/16	127/32	11/16	1	315/16	²⁵ / ₃₂	1 %6	2.7
88	5.450	3/4	1 15/16	21/4	3¼	23/32	3/4	1%	47/16	29/32	1½	4.5
	5.450	3/4	_	2%	3¼	1 15/16	11/32	1%	5	29/32	1½	4.5
98	6.350	%	2%	2½	3%	213/32	25/32	1 %6	51/16	11/32	1¾	6.5
	6.350	7/8	_	2%	4%	21/32	11/4	1 %6	6	11/32	1%	6.5
10S	7.500	1%	2¾	31/4	4%	2 ²³ / ₃₂	13/16	1%	511/16	11%2	2	11.3
	7.500	1%	_	3%	4¾	211/16	1 15/32	1%	7	11/32	2	11.3
	8.625	1¼	3%	3%	5¼	37/16	1%	1%	7%	1½	2%	17.6
11S	8.625	1¼	_	3%	5%	31/16	1%6	1%	8	1½	2%	17.6
128	10.000	1½	3%	315/16	5¾	4	19/32	25/16	81/4	1 11/16	211/16	27.2
138	11.750	2	4½	_	6%	4%	1%6	211/16	9¼	131/32	31/16	45.6
148	13.875	2	5	_	7½	4½	11/16	3¼	9%	21/4	3½	70.0
16S	18.875	2	5½	6	8	6	2	4¾	14¼	2¾	4¼	162.0

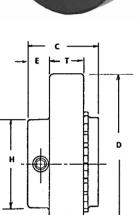
[★] Barreno Máximo recomendado con cuñero estándar.


^{★★} Barreno máximo recomendado con cuñero plano. Refiérase a la tabla de la página C-18 para ver las dimensiones de los cuñeros.

Peso aproximado para cada brida.

Coples QUADRA-FLEX® Tipo S Barrenos a la Medida

Pulgadas/Milímetros


Tamaño														Barren	os a la	Medi	da										
de Cople															Pulgad	as											
5S	5/8	3/4	13/16	7∕8	15/16	1	1 ½6	11%	1 %6	11/4	15	mm	20m	m 2	5mm												
	3/4	7∕⁄8	15/16	1	11/16	1%	1%6	11/4	1 %6	1%	1 ½6	1½ 20	Omm	25	mm	28m	m 3	0mm	35n	nm							
6S	1%	1¾	1%																								
7S	3/4	%	15/16	1	11/16	1%	1 %6	1¼	1 %6	1%	1 ½6	1½	1%6	1%	111/16	1¾	1%		25mr	n	28r	nm	30n	nm	38mm	42mm	
88	7/8	15/16	1	11/16	1%	1 %6	1¼	1%6	1%	11/16	1½	1%6	1%	111/16	1¾	1%	1 15/16	21/16	2%	28r	nm	30mi	m 32	2mm	38mm	42mm	48mm
	2%																										
98	15/16	1	1 ½6	1%	11/4	1%	1 %6	1½	1 %6	1%	1 11/16	1¾	1%	1 15/16	2	21/16	21/8	2%	21/4	2%	ś 2	⁄2 30n	nm 3	32mm	38mm	42mm	48mm
	2%																										
10S	1%	1¼	1%	11/16	1½	1%6	1%	111/16	1¾	1%	1 15/16	2	21/16	2%	2%6	21/4	2%	2%	2½	23/	4 2	% 55	mm	60m	m		
	3%																										
118	11/4	1%	1 ½6	1%6	1%	1%	1%	21/16	21/8	21/4	2%	2%	2¾	2%	3%												
110	3%																										
128	1%	21/8	2%	2%	2%	3%	3%	315/16	90n	nm																	
13S	2%	2%	3%																								
148	2%																										
16S	0																										

o Únicamente en Barreno Piloto.

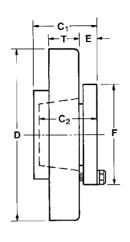
Dimensiones de Cuñeros

Dimensiones de Cuñeros Estándar

Diám. de Eje	Ancho	Profundidad
1/2 - 1/16	1/6	1/16
5⁄8 - 7∕8	3/16	3/32
¹⁵ / ₁₆ - 1 ¹ / ₄	1/4	1/8
1% - 1%	5√6	5/32
1%6-1%	3/6	3/16
113/16 - 23/4	1/2	1/4
25/6 - 23/4	5/6	5/16
213/16 - 31/4	3/4	3/6
35/16 - 33/4	7/8	7/16
313/16 - 41/2	1	1/2
4%6 - 5½	11/4	5%
5% - 6½	1½	3/4

Tolerancia en los Barrenos de las Bridas Tipo J y S, y de las Mazas SC

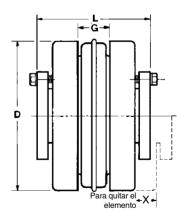
Barreno (Pulgadas)	Tolerancia (Pulgadas)
Hasta 1	+.0000 a +.0010
1 1/1 a 2 1/4	+.0000 a +.0015
2% a 2%	+.0000 a +.0020
211/16 a 311/16	+.0000 a +.0025
3¾ a 4¾	+.0000 a +.0030
41% a 6	+.0000 a +.0035


Dimensiones de Cuñeros Planos

Tamaño	Diám. de Maza	Largo Total				Dime	nsiones de Cuñe	ros Planos			
de Cople	(H)	(C)	Barreno	Cuñero	Cuña	Barreno	Cuñero	Cuña	Barreno	Cuñero	Cuña
6S	2½ 2⅓6	1%6 1%6	15/8	3% × 1% 3% × 1%	3/ ₆ × 5/ ₁₆ × 1/ ₄	1¾	3/8 × 1/1/6	3% × 1/4 × 11/4	17/8	½ × ½	½ × 5/16 × 1½
7S	213/16	127/32	1 ½	½ × ½	½ × ¾ × 1 13/16						
8S 8S	3¼ 3¼	2¾6 1 ¹⁵ ⁄16	2½ 2½	½ × ¾6 ½ × ¾6	½ × ½ × ½ × 2½6 ½ × ½ × ½ × 2½6	2 ³ / ₈ 2 ³ / ₈	% × ¼ % × ¼	5% × 7/6 × 1 15/6 5% × 7/6 × 1 15/6			
98	3% 4%	2 ¹ 3⁄ ₂ 2 ³ ⁄ ₂	2½ 2½	5% × 3/16 5% × 3/16	5% × 3% × 23% 5% × 3% × 23%	2 ⁷ / ₈ 2 ⁷ / ₈	34 × 1/8 34 × 1/8	34 × ½ × 2½6 34 × ½ × 2½6			
10S	4% 4%	2 ²¹ / ₃₂ 2 ¹¹ / ₁₆	2 ⁷ / ₈ 2 ⁷ / ₈	3/4 × 1/4 3/4 × 1/4	34 × 58 × 211/16 34 × 58 × 211/16	3 ³ / ₈ 3 ³ / ₈	½ × ⅓6 ½ × ⅓6	% × % × 2 ¹¹ / ₁₆ % × 3% × 2 ¹¹ / ₁₆			
118	3¼ 4% 5¼ 5%	31/16 37/16 31/16 31/16	3 ⁷ / ₈ 3 ⁷ / ₈ 3 ⁷ / ₈ 3 ⁷ / ₈	1 × ¼ 1 × ¼ 1 × ¼ 1 × ¼	1 × ½ × 3 1 × ½ × 3 1 × ½ × 3 1 × ½ × 3						
128	3¾ 4⅓ 5¾	4 4 4	3 ¹⁵ / ₁₆ 3 ¹⁵ / ₁₆ 3 ¹⁵ / ₁₆	1 × ¼ 1 × ¼ 1 × ¼	$1 \times \% \times 3^{15}/6$ $1 \times \% \times 3^{15}/6$ $1 \times \% \times 3^{15}/6$						

QUADRA-FLEX® Tipo B para Buje

Bridas


Las bridas tipo B están fabricadas de hierro fundido de alta calidad. El mismo tipo de hierro fundido de alta resistencia utilizado en la fabricación de las bridas QUADRA-FLEX tipo S y SC. Las bridas tipo B están diseñadas para ensamblarse con los bujes tipo QD de Matin, lo cual facilita su instalación y desmontaje. Las bridas tipo B no deben usarse con elementos de Hytrel.

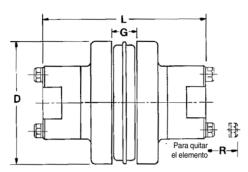
Tamaño de	Buje		Dimensiones									Peso	(lb) †
de Cople	Requerido	C ₁	C ₂	D	E	F	G	L	T	Х	Máximo★	Brida	Buje
6B	JA	1 17/32	1	4.000	7∕16	2	7∕8	35/16	25/32	13/32	1 ¾6	1.7	.9
7B	JA	1 19/32	1	4.625	7/16	2	1	31/16	25/32	1 ½6	1 ¾6	2.0	1.0
8B	SH	1 ²⁷ / ₃₂	11/4	5.450	1/2	211/16	1 7/16	315/16	29/32	1½	1%	3.1	1.0
9B	SD	23/16	1 13/16	6.350	7/16	3%6	1 7/16	4%	11/32	1¾	1 15/16	4.9	1.5
10B	SK	1 ²⁷ / ₃₂	1%	7.500	5/8	3%	1%	55/16	11/32	2	2½	7.0	2.0
11B	SF	21/4	2	8.625	5/8	4%	1%	6%	1½	2%	2¾	11.8	3.0
12B	E	211/16	2%	10.000	7/8	6	25/16	71/16	1 11/16	211/16	37/16	17.2	10.0
13B	F	311/16	3%	11.750	1	6%	211/16	8%	1 31/32	3	315/16	30.5	11.5
14B	F	311/16	3%	13.875	1	6%	3¼	9¾	21/4	3½	315/16	51.0	11.5
16B	J	4¾	4½	18.875	1 ¾6	7¼	4¾	12%	2¾	41/4	4½	120.0	18.0

^{*} Barreno máximo con cuñero

Buje QD Dimensiones de Cuñeros (pulg.)

Buje	Barrenos	Cuñero Estándar
	½ - 1	Estándar
JA	11/16 - 11/8	1/4 × 1/16
	13/16	1/4 × 1/16
	1¼	Sin Cuñero
	½ - 1%	Estándar
SH	17/6 - 15/8	3% × 1/16
	1 11/16	Sin Cuñero
	1/2 - 111/16	Estándar
	1¾	% × 1/4
SD	113/16	½ × ½
	1% - 115/16	½ × ¼ ₆
	2	Sin Cuñero
	½ - 2½	Estándar
SK	23/16 - 21/4	½ × ½
	25/16 - 21/2	5% × 1/16
	2% - 2%	Sin Cuñero
	½ - 2¼	Estándar
	25/16 - 21/2	5% × 3/6
SF	2%6 - 2%	% × 1/16
	213/16 - 27/8	3⁄4 × 1⁄16
	215/16	³ ⁄ ₄ × ¹ ⁄ ₃₂
	% - 2%	Estándar
E	213/16 - 31/4	34 × 1/4
	35/16 - 37/16	% × ½6
	3½	½ × ¼ ₆
	1 - 35/16	Estándar
F	3% - 3%	½ × ⅓6
	313/16 - 315/16	1 × 1/4
	4	Sin Cuñero
	1¼ - 3¾	Estándar
J	313/16 - 315/16	1 × 1/4
	4 - 4½	1 × ½

Bujes


Los bujes QD *Martin* hacen que el montaje de la brida al eje sea fácil y seguro sin necesidad de usar opresores. Los bujes son cónicos y tienen una ranura que va desde la brida a la sección cónica que permite la sujeción del buje al eje, eliminando bamboleo, vibración y la incrustación causada por la corrosión. Es el mismo tipo de buje que se usa en los sprockets y poleas *Martin* y está disponible de entrega inmediata.

[†] Peso aproximado para cada brida.

Coples Espaciadores Tipo SC

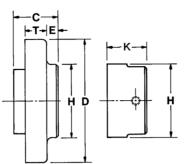
Las dimensiones indicadas en esta página corresponden a los coples QUADRA- FLEX® con bridas para Espaciador SC totalmente ensamblados. Las dimensiones de los componentes individuales se encuentran en la página siguiente.

Tamaño	Distancia Requerida Entre	Utilice Brida	Utilice Maza	Max. Barreno Cuñero		Dimen	siones		Peso ²
de Cople	Ejes	No.	No.	Estándar	D	L ²	G	R	(lb)•
4JSC	3½	4JSC35	4H	11%	2.460	5%	%	1/2	4.7
5SC	3½	5SC35	5H	1%	3.250	5%	3/4	%6	4.1
6SC	3½	6SC35	6H	1%	4.000	5%	7/8	3/4	7.1
6SC	4%	6SC44	6H	1%	4.000	6¾	7/8	3/4	7.9
6SC	5	6SC50	6H	1%	4.000	7%	%	3/4	8.5
7SC	3½	7SC35	7H	1%	4.625	6%	1	5/8	9.1
7SC	4%	7SC44	7H	1%	4.625	71/4	1	5/8	10.1
7SC	5	7SC50	7H	1%	4.625	7%	1	%	10.7
8SC	3½	8SC35	8H	1%	5.450	6%	1%	13/16	14.7
8SC	3½	8SC35-10	10H★	2%	5.450	81/4	11%	13/16	22.7
8SC	4%	8SC44	8H	1%	5.450	7¾	11//	13/16	16.1
8SC	5	8SC50	8H	1%	5.450	8%	1%	1%6	15.9
8SC	5	8SC50 -10	10H★	2%	5.450	9%	1%	1%	26.5
9SC	3½	9SC35	9H ★	2%	6.350	7½	17/16	11/16	22.0
9SC	4%	9SC44	9H <i>★</i>	2%	6.350	81/4	1 %6	11/16	23.4
9SC	5	9SC50	9H★	2%	6.350	8%	17/16	11/16	24.6
9SC	5	9SC50 -11	11H ★	2%	6.350	10%	1 %6	1%6	40.2
9SC	7	9SC70-11	11H ★	2%	6.350	12%	1 %6	1%6	48.2
9SC	7¾	9SC78-11	11H ★	2%	6.350	13%	1 %6	1%	50.8
10SC	4¾	10SC48	10H★	2%	7.500	9%	1%	1%6	35.4
10SC	5	10SC50	10H★	2%	7.500	9%	1%	1%6	38.2
10SC	7	10SC70-13	13H ★	3%	7.500	13%	1%	1%	71.8
10SC	7¾	10SC78-13	13H ★	3%	7.500	14%	1%	1%	75.6
10SC	10	10SC100-13	13H ★	3%	7.500	16%	1%	1%	89.0
11SC	4¾	11 SC48	11H ★	2%	8.625	10%	1%	1%6	54.5
11SC	5	11 SC50	11H★	2%	8.625	10%	1%	1%6	54.8
11SC	7	11SC70-14	14H	3%	8.625	14%	1%	2	85.7
11SC	7¾	11SC78-14	14H	3%	8.625	15%	1%	2	90.1
11SC	10	11SC100-14	14H	3%	8.625	17%	1%	2	102.5
12SC	7	12SC70	12H★	2%	10.000	12%	25/16	1½	87.7
12SC	7	12SC70-14	14H	3%	10.000	14%	25/16	2	98.9
12SC	7¾	12SC78	12H★	2%	10.000	13%	25/16	1½	91.5
12SC	7¾	12SC78-14	14H	3%	10.000	15%	25/16	2	103.3
12SC	10	12SC100-14	14H	3%	10.000	17%	25/16	2	115.5
13SC	7¾	13SC78	13H ★	3%	11.750	14%	211/16	1%	121.8
14SC	7%	14SC78	14H	3%	13.875	15%	3¼	2	179.4

[★] Para estos tamaños también están disponibles mazas cortas (HS).

Peso aproximado del cople con espaciador totalmente ensamblado.

¹ La brida 4JSC35 a 1½ tiene cuñero plano.


² La dimensión "L" y el peso del ensamble cambiarán si se utilizan una o dos mazas cortas (HS).

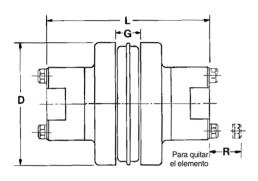
NOTA: Para solicitar o especificar componentes individuales refiérase a la página C-23.

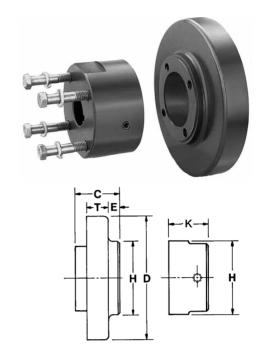
Mazas y Bridas Tipo SC

Mazas y Bridas Tipo SC

Las dimensiones indicadas en esta página corresponden a las bridas y a las mazas utilizadas en los coples QUADRA- FLEX® con bridas para Espaciador SC. Las dimensiones de los componentes ensamblados se encuentran en la página anterior. Estas bridas pueden utilizar cualquiera de los elementos mostrados en la página C-14.

		Distancias				Dimensiones			
Tamaño de Cople	Brida No.	Entre Ejes★	Para Maza	D	E	Н	С	Ţ	Peso (lb)•
4JSC	4SC35	3½	4H	2.460	7⁄ ₁₆	2	7/6	7/16	1.2
5SC	5SC35	3½	5H	3.250	51/64	2	111/16	19/32	1.2
	6SC35	3½	6H	4.000	19/32	2½	1%	23/32	2.0
6SC	6SC44	4%	6H	4.000	11/32	2½	21/16	23/32	2.4
	6SC50	5	6H	4.000	111/32	2½	2%	23/32	2.7
	7SC35	3½	7H	4.625	15/32	213/16	1%	25/32	2.3
7SC	7SC44	4%	7H	4.625	29/32	213/16	21/16	²⁵ / ₃₂	2.8
	7SC50	5	7H	4.625	1 1 1/32	213/16	2%	25/32	3.1
	8SC35	3½	8H	5.450	%2	3¼	1%	²⁹ / ₃₂	3.5
	8SC35-10	3½	10H-10HS	5.450	%2	4%	1%	29/32	3.4
8SC	8SC44	4%	8H	5.450	23/32	3½4	21/16	29/32	4.2
	8SC50	5	8H	5.450	11/32	31/4	2%	29/32	4.6
	8SC50-10	5	10H-10HS	5.450	11/32	4%	2%	29/32	5.3
	9SC35	3½	9H-9HS	6.350	1/16	3%	1 11/16	11/32	5.1
	9SC44	4%	9H-9HS	6.350	%6	3%	21/16	11/32	5.8
9SC	9SC50	5	9H-9HS	6.350	3/4	3%	2%	11/32	6.4
	9SC50-11	5	11H-11HS	6.350	3/4	5¼	2%	11/32	6.9
	9SC70-11	7	11H-11HS	6.350	1¾	5¼	3%	11/32	10.9
	9SC78-11	7%	11H-11HS	6.350	2%	5¼	3¾	11/32	12.1
	10SC48	4¾	10H-10HS	7.500	11/32	4%	21/4	11/32	9.8
	10SC50	5	10H-10HS	7.500	15/32	4%	2%	11/32	10.1
10SC	10SC70-13	7	13H-13HS	7.500	1 15/32	6%	3%	11/32	14.5
	10SC78-13	7¾	13H-13HS	7.500	1 ²⁷ / ₃₂	6%	3¾	11/32	16.3
	10SC100-13	10	13H-13HS	7.500	231/32	6%	4%	1 1/32	22.5
	11SC48	4¾	11H-11HS	8.625	1/32	5¼	1½	1½	12.5
	11SC50	5	11H11HS	8.625	1/16	5¼	1%6	1½	12.7
11SC	11SC70-14	7	14H	8.625	11/16	6½	2%6	1½	16.1
	11SC78-14	7¾	14H	8.625	11/16	6½	215/16	1½	18.3
	11SC100-14	10	14H	8.625	2%6	6½	41/16	1½	24.5
	12SC70	7	12H-12HS	10.000	21/32	5%	215/32	1 11/16	23.2
	12SC70-14	7	14H	10.000	21/32	6½	215/32	1 11/16	21.2
12SC	12SC78	7¾	12H-12HS	10.000	11/32	5%	227/32	1 11/16	25.1
	12SC78-14	7%	14H	10.000	11/32	6½	221/32	1 11/16	23.4
	12SC100-14	10	14H	10.000	25/32	6½	331/32	1 11/16	29.5
13SC	13SC78	7%	13H-13HS	11.750	%6	6%	3¼	1³1/32	38.4
14SC	14SC78	7%	14H	13.875	1/32	6½	223/32	21/4	55.0


[★] Las bridas se pueden combinar para formar diferentes "Distancias entre Ejes". Vea las tablas de la página C-23.

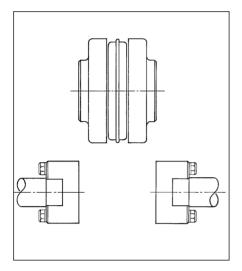

Peso aproximado para cada brida.

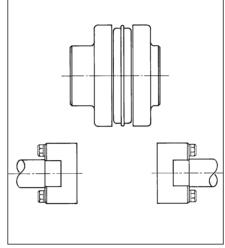
Barrenos de las Mazas Espaciadoras SC

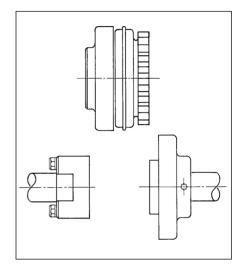
				Barrenos a la Medida		Dimensio	nes	
Tamaño de Cople	No. de Maza	Barreno Máximo	Barreno Piloto	Barreno con Cuñero Estándar y Opresor	K	Н	Tornillos Incluidos	Peso (lb)•
4JSC	4H	1%	1/2	% - % - 1 - 1% ★	1%	2	4 — 10 × 2	1.1
5SC	5H	1%	1/2	% - ¾ - ¾ - 1 - 1½	13/32	2	4 — 10 × 1½	.7
6SC	6H	1%	%	% - % - 1 - 1% - 1% - 1%	1 1/32	2½	4 — ¼ × 1¾	1.3
7SC	7H	1%	%	% - 1 - 1% - 1% - 1% - 1%	1 15/32	213/16	4 — ¼ × 1%	1.9
8SC	8H	1%	3/4	% - 1 - 1% - 1% - 1% - 1% - 1% - 1%	1 ²³ / ₃₂	31/4	4 — ½ × 2½	3.2
9SC	9H	21/8	7/8	1 - 1% - 1% - 1% - 1% - 1% - 2%	1 31/32	3%	4 — % × 2%	4.4
	9HS	1½		11/4	1 17/32	3%	4 — ¾ × 2¼	3.7
10SC	10H	2%	1%	1% - 1% - 2% - 2%	211/32	4%	4 — 1/16 × 3	7.3
	10HS	1%		11/4	1 21/32	4%	4 — ¾6 × 2½	5.5
11SC	11H	2%	1%	1% - 2% - 2% - 2%	223/32	5¼	4 — ½ × 3½	12.2
	11HS	1%		1% - 1%	121/32	51/4	4 — ½ × 2¾	9.3
12SC	12H	2%	1%	1% - 2% - 2% - 2%	231/32	5%	4 — % × 4	16.6
	12HS	2½		2%	217/32	5¾	4 — % × 3½	14.1
13SC	13H	3%		2% - 2% - 3%	311/32	6%	4 — % × 4%	19.9
	13HS	2½		2% - 2%	215/32	6%	4 — % × 3½	16.0
14SC	14H	3%		2% - 2% - 3% - 3%	321/32	6½	4 — % × 5	24.2

[★] La brida 4JSC35 a 1½ tiene cuñero plano.
Peso aproximado para codo mana.

Peso aproximado para cada maza.


Distancia entre Ejes


Distancia entre Ejes Coples QUADRA-FLEX®


Tenemos espaciadores para coples disponibles para cubrir la mayoría de las distancias entre ejes requeridas. Para cubrir distancias entre ejes que no sean estándar se pueden combinar diferentes bridas.

En la tabla denominada "Estándar" se cubren las distancias utilizando bridas idénticas; en la tabla

denominada "Combinación" se cubren las distancias entre centros usando una combinación de bridas; en la tabla denominada "Semi-Espaciador" se utiliza una brida que no usa espaciador, por lo tanto no tiene una maza desmontable con otra que si la tiene, para cubrir las distancias indicadas.

Estándar

Está	ndar
Distancia entre Ejes	Utilice Bridas★
3½	2 - () SC35
4%	2 - () SC44
5	2 - () SC50
7	2 - () SC70
7¾	2 - () SC78
10	2 - () SC100

Combinación

Combi	nación
Distancia entre Ejes	Utilice Bridas★
315/16	SC35 y SC44
4¼	SC35 y SC50
411/16	SC44 y SC50
5¼	SC35 y SC70
5%	SC35 y SC78
5 ¹¹ / ₁₆	SC44 y SC70
6	SC50 y SC70
6¼ ₆	SC44 y SC78
6%	SC50 y SC78
6¾	SC35 y SC100 ★ ★
7%6	SC44 y SC100 ★ ★
7%	SC70 v SC78

*	Revise el tamaño del cople para la disponibilidad
	de las bridas.

SC50 y SC100 SC70 y SC100 SC78 y SC100

7½ 8½

NOTA: Para otras combinaciones — consulte a Matin.

Semi-Espaciador

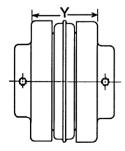
Semi-Espaciador							
Distancia entre Ejes	Utilice Bridas★						
1%	S y SC35						
25/16	S y SC44						
25%	S y SC50						
35⁄4	S y SC70						
4	S y SC78						
5%	S y SC100						

^{★★} No hay en inventario.

Instalación

Las bridas QUADRA-FLEX® *Martin* y los elementos flexibles están disponibles en una gran variedad de tamaños y tipos. Lo primero es determinar el tamaño y el tipo de los componentes necesarios para el cople. Saque todos los componentes de sus cajas y ensamble el cople sin apretarlo. Si el elemento es bipartido no coloque el aro retenedor. Compare las RPM máximas indicadas en la tabla contra la velocidad de operación.

La capacidad de transmisión de potencia de los elementos EM de *Matte* es la misma que la de los de EPDM y de Neopreno por lo que pueden intercambiarse; sin embargo la capacidad de los elementos de Hytrel es diferente por lo que no puede intercambiarse con los elementos de TPR (EM), EPDM (E) y neopreno (N). Se deberá revisar la capacidad de potencia (HP) y de torque cuando se seleccionen elementos de Hytrel.



Paso 1. Asegúrese que la corriente eléctrica del motor haya sido cortada y que se haya cerrado con llave el interruptor de modo que no pueda ser prendido por ninguna otra persona. Este procedimiento de corte aplica para cualquier otra parte involucrada en la transmisión. Si no se siguen estas instrucciones se pueden ocasionar graves daños a las personas y/o a las instalaciones.

Paso 2. Prepare los ejes para instalar el cople. Inspeccione todos los componentes para quitar cualquier recubrimiento de protección o lubricante que pudiera venir en los barrenos, superficies de ensamble o en los tornillos.

Paso 3. Deslice las bridas en los ejes. Con las bridas tipo B para buje QD puede ser necesario expandir un poco el barreno del buje para facilitar la instalación.

Paso 4. Coloque las bridas en los ejes de modo que queden aproximadamente a la distancia "Y" (distancia entre bridas) indicada en la tabla. Es recomendable tener la misma longitud de eje dentro de cada brida. Apriete una brida en la posición deseada y retire la otra brida la distancia suficiente para instalar el elemento flexible. Si el elemento es de TPR, bipartido, no coloque el aro retenedor en su posición, todavía pero deje que cuelgue libremente en la ranura que está próxima a los dientes del elemento.

Paso 5. Deslice la brida suelta en el eje hasta que el elemento se asiente en los dientes de ambas bridas. Siempre deberá referirse a la dimensión "Y" aunque no sea una dimensión crítica. Asegure la brida al eje y apriete los opresores y los tornillos hasta llegar a los valores de torque correctos.

Paralelo

Angular

Paso 6. Revise el alineamiento paralelo colocando una regla a lo largo de las dos bridas y mida la desviación máxima en varios puntos de la periferia del cople. No gire el cople para tomar estas medidas. Refiérase a la tabla para conocer la desviación máxima permitida en desalineamiento paralelo. Si es necesario deberá realinear el cople.

Paso 7. Revise el alineamiento angular con un vernier, un calibrador o un micrómetro. Tome medidas de un extremo a otro de las bridas en varios puntos alrededor de la periferia. No gire el cople al tomar estas medidas. Determine la diferencia entre los valores máximos y mínimos y asegúrese de que esa diferencia no exceda el valor para el desalineamiento angular indicado en la tabla. Si necesita hacer una corrección revise una vez más el alineamiento paralelo.

RPM Máximas y Desalineación Permitida (Dimensiones en Pulgadas)

Tamaño	Máx.	Tipo	s JEM, EM, I	EyN	7	★Tipo H y HS		
de Elem.	RPM	Paralelo	Angular	Y	Paralelo	Angular	Y	
3	9200	.010	.035	1.188			_	
4	7600	.010	.043	1.500	_	_	_	
5	7600	.015	.056	1.938	_	_	_	
6	6000	.015	.070	2.438†	.010	.016	2.500	
7	5250	.020	.081	2.563	.012	.020	2.625	
8	4500	.020	.094	2.938	.015	.025	3.000	
9	3750	.025	.109	3.500	.017	.028	3.563	
10	3600	.025	.128	4.053	.020	.032	4.125	
11	3600	.032	.151	4.875	.022	.037	4.938	
12	2800	.032	.175	5.688	.025	.042	5.750	
13	2400	.040	.195	6.688	.030	.050	6.688	
14	2200	.045	.242	7.750	.035	.060	7.813	
16	1500	.062	.330	10.250	_	_	_	

NOTA: Los valores indicados en esta Tabla aplican si el torque real transmitido es mayor a ¼ de la capacidad de torque del cople.

Para un torque menor reduzca los valores indicados a la mitad.

- ★ Los elementos de Hytrel H y HS no pueden sustituir a los elementos de TPR (JEM, JEMS, EM), EPDM (E) o Neopreno (N).
- † Cuando se usen bridas 6J el valor que debe usarse es 2.125".

Paso 8. Si el cople utiliza un elemento bipartido con aro de retención, coloque el aro en la ranura que se encuentra en el centro del elemento.

Nota: Se necesita cierta fuerza para colocar el aro en la ranura.

Paso 9. Instale las guardas de protección de acuerdo a las regulaciones de la OSHA o de cualquier otro código de seguridad local o estatal que esté vigente.

ADVERTENCIA: LOS ELEMENTOS FLEXIBLES PUEDEN SALIR EXPULSADOS DEL COPLE SI ESTÁN SUJETOS A IMPACTOS SEVEROS O AL MAL USO.

Coples de Cadena de Rodillos

Coples de Cadena de Rodillos en Existencia

Tipo TBH Tipo TBF

Barrenado a la Medida y con Barreno Piloto QD

Cubiertas

Coples de Cadena de Rodillos en Existencia

Todos los coples de cadena Matin tienen dientes endurecidos.

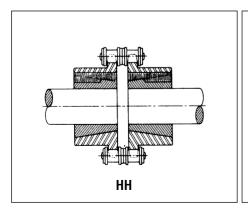
Coples Barrenados a la Medida, con Cuñero y Opresores

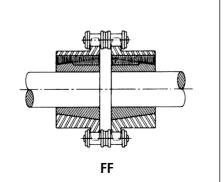
Número de Cople	Barreno a la Medida, Incluye Cuñero Estándar y Opresores	A	В	С	L	D.E. del Cople	Peso (lb)
4012	1⁄2, 1⁄8, 3⁄4	1 13/32	11%	%2	217/32	213/32	.4
4016	%, ¾, ½, ¹½e, 1, 1½, 1¾e, 1¼	131/32	11//	% ₂	217/32	31/32	.8
5016	%, %, 1, 1%, 1%, 1%, 1%, 1%, 1%	2½	17/16	%	31/4	325/32	1.6
5018	¾, ¾, 1, 1½, 1¾, 1¾, 1¾, 1¾, 1½, 1½, 1¾, 1¾, 1¾, 1¾6	231/32	111/16	%	3¾	4%	2.4
6018	1, 1½, 1¾, 1¾, 1¾, 1¾, 1½, 1½, 1¾, 1¾, 1¾, 11, 11, 2½, 2½, 2¾, 2½, 2½, 2½, 2½, 2½, 2½, 2½, 2½, 2½, 2½	3½	1%	7/16	4%	5	4.8
6020	1½, 1½, 1½, 1¾, 1½, 2½, 2½, 2½, 2½, 25%	3%	2	7/16	47/16	5½	5.2
6022	11/4, 11/4, 11/4, 11/4e, 21/4, 21/4, 21/4, 21/4, 21/4	4½	21/4	7/16	411/16	561/64	7.8
8018	11/4, 13/4, 115/6, 2, 21/4, 23/4, 27/4, 25/4, 27/4, 215/46	4%6	2%	³⁷ / ₆₄	521/64	621/32	9.5
8020	1½, 2¾6, 2¼6, 2¹¼6, 2¹⁵%6, 3¼, 3¾, 3¾6	5%	2%	37/64	533/4	71%4	13.4
10018	1½, 2¾6, 2¾6, 3¾6	511/16	2¾	23/32	61/32	821/64	18.2
10020	2, 3%, 37/6, 315/6	623/32	31/4	23/32	631/32	91/4	25.0
12018	31/16, 315/16, 41/16	6¾	3½	55/64	7%	10	28.0
12022	4%, 4%, 41%	8¾	4	55/64	8%	1151/64	55.0

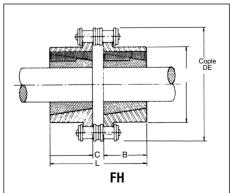
PRECAUCIÓN: Todos los productos de Transmisión de Potencia son potencialmente peligrosos y deben tener guardas de protección de acuerdo a las velocidades y aplicacíones que cumplen.

Coples QD

Número de Cople	Buje Utilizado	Barreno Máximo★★	A	В	D	С	L	D.E. del Cople	K†	Peso (lb)
4016JA	JA	1	2	7∕8	1 5/16	%2	223/32	31/32	11/4	.9
5018SH	SH	1%	231/32	1	1½	%	3%	4¾6	1¾	1.3
6020SK	SK	2%	3%	1¼	1%	7/16	4%	5½	21/4	2.5
8018SF	SF	25/16	4%6	1¾	2%	37/64	521/64	621/32	21/4	5.3


^{* *} El Barreno Máximo aquí indicado tiene cuñero estándar. Se recomienda que este máximo no sea excedido en ninguna de las dos mitades del cople.


Coples con Buje Taper Tipos TBH y TBF


No. de	No. de		Datos del Buje									Peso
Cople Tipo TBH	Cople Tipo TBF	Buje Utilizado	Barreno Máximo	Barreno Piloto	A	В	С	J*	K†	L	D.E.	(lb)
4016TBH	4016TBF	1108	11%	1/2	1 ³¹ / ₃₂	%	%₂	%	3/4	21/32	31/32	.9
5018TBH	5018TBF	1610	1%	1/2	231/32	1	%	13/16	11/16	2%	4%	1.1
6020TBH	6020TBF	2012	2	1/2	3%	1¼	7/16	15/16	1%	215/16	5½	2.7
8020TBH	8020TBF	3020	3	15/16	5%	2	37/64	1 ¾6	21/16	437/64	71%4	6.1
10020TBH	10020TBF	3535	3½	1 %6	623/32	3½	23/32	2	2%	723/32	9%	19.0

^{*} Espacio necesario para (1) apretar el buje con una llave Allen corta y (2) aflojar los tornillos para que el extractor quite el buje.

Nuestras Cubiertas Estándar Pueden Usarse en Estos Coples.

[†] Espacio mínimo requerido para quitar el cople usando los tornillos como tornillos de extracción.

[†] Espacio mínimo requerido para quitar el cople usando los tornillos como tornillos de extracción con llave allen corta.

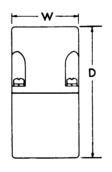
Coples de Cadena de Rodillos en Existencia

Todos los coples de cadena *Martin* tienen dientes endurecidos

Selección de Coples

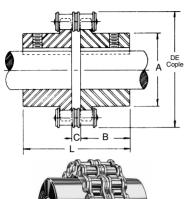
La capacidad de torque de los coples de cadena excede el torque que es transmitido por los ejes cuyo diámetro esté dentro del rango de barrenos del cople. Debido a lo anterior se debe seleccionar el cople más pequeño que pueda ser barrenado al diámetro de ambos ejes. Para operaciones reversibles, de impacto, de cargas pulsantes o cualquier otro tipo de condiciones de operación severas seleccione el tamaño superior siguiente.

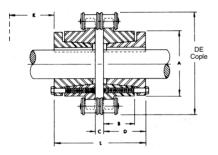
La cubierta se debe usar para asegurar una mayor duración del cople, especialmente si el cople opera a alta velocidad o en condiciones de humedad. Para asegurar una lubricación adecuada se debe llenar el espacio entre la cubierta y el cople con grasa para coples de consistencia suave a media.


Coples con Barreno Piloto para Calibrar

Número de Cople	Máximo Barreno Pulgadas	Barreno Piloto Pulgadas	Peso (lb)	RPM Máximas Recomendadas	No. de Cople de Cadena	Peso Ib
4012	7∕8	7∕16	.5	5000	4012 CHN	.4
4016	1 5/16	5/8	1.0	5000	4016 CHN	.5
5016	111/16	%	2.2	4000	5016 CHN	1.2
5018	2	3/4	3.5	3600	5018 CHN	1.3
6018	21/16	1	5.0	3000	6018 CHN	2.2
6020	2¾	1%	6.5	2500	6020 CHN	2.6
6022	3	1%	9.4	2500	6022 CHN	2.7
8018	31/4	1%	11.0	2000	8018 CHN	5.3
8020	3%6	1½	16.3	2000	8020 CHN	5.9
10018	3%	1½	20.3	1800	10018 CHN	9.8
10020	4%	1½	31.8	1800	10020 CHN	10.9
12018	411/16	2	36.8	1500	12018 CHN	17.3
12022	6%	2	70.0	1200	12022 CHN	21.2

Cubiertas para Coples


Las cubiertas para coples pueden usarse con los coples de cadena tipo QD y Estándar Barrenados a la Medida. Las cubiertas permiten que la lubricación sea excelente. Su uso se recomienda para extender la vida útil del cople. Las cubiertas se fabrican en aluminio y son bipartidas para facilitar su instalación. Tienen sellos de aceite de hule sintético que se ajustan al contacto con las mazas del cople, retienen el lubricante y previenen la entrada de suciedad. Las cubiertas se suministran con empaques entre las dos mitades.

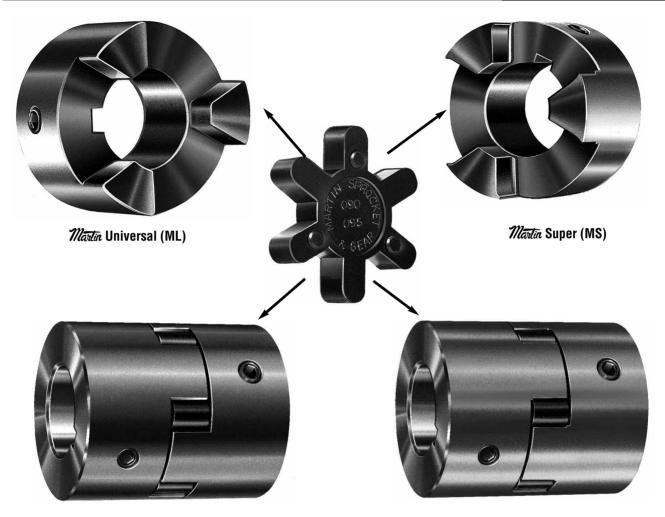

No. de Catálogo	Alur	ninio	Plá	stico	Peso
de Cubierta	D	W	D	W	(lb)
4012COV**	4	2	4	25/16	.78
4016COV**	4	2	4	25/16	.92
5016COV**	5%	2%	5%	2%	1.30
5018COV**	5%	2%	5%	2%	1.30
6018COV**	6%	215/16	6%	31/16	2.44
6020COV**	6%	215/16	6%	31/16	2.44
6022COV*	8%	4	8%6	4	4.88
8018COV	83/16	4	83/16	4	4.88
8020COV	83/16	4	83/16	4	4.88
10018COV	9%	515/16	9%	515/16	8.76
10020COV	10%	5¼	10%	51/4	12.66
12018COV	11%	7%	11%	7%	16.46
12022COV	13¼	715/16	13¼	715/16	19.50

- * Utilice las cubiertas 8018 Disponible con sellos especiales.
- ** Se suministra en plástico a menos que al ordenar se especifique en aluminio usando el sufijo "AL".

BS Cople

Cople QD

Tipo TBF



Aluminio y Plástico

Todos los coples de cadena *Martin* tienen dientes endurecidos.

Coples de Mordaza

— Mārlin Ofrece Dos Estilos — El Mārlin Super — Para Mayor Potencia (HP) El Mārlin Universal — Totalmente Intercambiable

- No necesitan lubricación.
- · Fácil instalación.
- No existe contacto metal con metal.
- Resistentes al aceite, polvo, arena, humedad y grasa.
- Fácil inspección del elemento de carga.
- Flexibilidad para compensar el desalineamiento angular y paralelo de los ejes mediante el elemento de Buna-N, que permite transmitir suavemente la potencia.

Coples de Mordaza en Existencia

Procedimiento de Selección para Coples de Mordaza

- A. Determine el factor de servicio de acuerdo con la Unidad Impulsada y la Unidad Motriz indicadas en la Tabla de Factores de Servicio.
- B. Multiplique el Factor de Servicio seleccionado por la potencia (HP) de la Unidad Motriz para obtener la Potencia de Diseño (HP) (DHP).
- C. Con base a la Potencia de Diseño calculada, seleccione el cople que tenga una capacidad igual o mayor a dicha potencia.

Tabla de Factores de Servicio		Unidad Motriz	
Máquina Impulsada	Motor Eléctrico o Turbina de Vapor	Motor de Gasolina o Diesel de 6 o más Cilindros	Motor de Gasolina o Diesel de Menos de 6 Cilindros
Ligero: Carga uniforme o constante que nunca excede la capacidad del motor (HP), de arranque infrecuente. Agitadores, Bombas Centrífugas, Calentadores, Evaporadores, Generadores, Transportadores, Sopladores, Ventiladores.	1.0	1.5	2.0
Moderado: Inercia pesada, Impacto moderado, arranques frecuentes; cargas máximas que no excedan 125% de la potencia promedio del motor. Carga irregular. Batidoras, Bombas Rotatorias, Bombas de Engrane, Compresores, Elevadores, Generadores, Grúas, Hornos, Máquinas para Madera, Máquinas – Herramientas, Mezcladoras, Molino de pulpa, Polipastos, Ventiladores para Minas.	1.5	2.0	2.5
Pesado: Condiciones de impacto pesado o de reversa frecuente. Cargas máximas que no excedan 150% de la potencia promedio del motor. Carga irregular. Bombas Reciprocantes, Cizallas, Compresores, Cribas Vibratorias, Elevadores para carga y de pasajeros, Estiradoras de Alambre, Malacates, Molinos de Bolas, Molinos de Martillos, Molinos de Rodillos, Punzonadoras, Quebradoras.	2.0	2.5	3.0

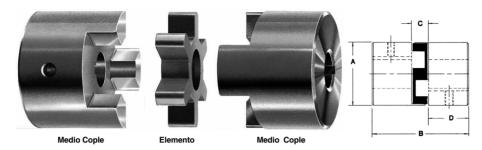
Tolerancias de Barrenos: 1/2 - 1 3/4 + .001 - .000

1¹³/₁₆ - 2 ⁵/₈ + .0015 - .0000

Martin ML (Serie Universal) — Capacidad de Torque y Potencia HP

Número de	Número de Catálogo para		de Torque oulg	Ca	Bun apacidad de Potenci		VI		Barreno	Peso
Catálogo	Acero Inoxidable	Buna-N	Hytrel®	100	300	1200	1800	3600	- Máximo	lb
ML035	ML035SS	3.5	_	.006	.02	.07	.10	.20	3/8	.07
ML050	ML050SS	31.5	94.5	.05	.15	.60	.9	1.8	5/8	.13
ML070	ML070SS	42	126	.07	.21	.84	1.2	2.5	3/4	.25
ML075	ML075SS	81	242	.13	.39	1.56	2.3	4.7	⁷ /8	.44
ML090	ML090SS	140	420	.22	.66	2.64	4.0	7.9	11/8	.69
ML095	ML095SS	189	567	.30	.90	3.6	5.4	10.8	11/8	.84
ML099	ML099SS	290	870	.46	1.4	5.5	8.3	16.6	1%	1.19
ML100	ML100SS	416	1248	.66	2.0	7.9	11.9	23.8	1 ³ / ₈	1.47
ML110	ML110SS	756	2268	1.2	3.6	14.4	21.6	43.2	15/8	3.20
ML150	ML150SS	1197	3591	1.9	5.7	22.8	34.2	68.4	1 ½	4.50
ML190	ML190SS	1512	4536	2.4	7.2	28.8	43.2	86.4	21/8	8.25
ML225	ML225SS	2268	6804	3.6	10.8	43.2	64.8	129.6	25//8	12.00

NOTA: Las capacidades de Potencia indicadas en esta tabla corresponden al elemento de Buna–N con Factor de Servicio de uno. Cuando utilice el elemento de Hytrel multiplique la capacidad por tres.


Marlin MS (Serie Super) — Capacidad de Torque y Potencia HP

Número de	Capacidad de Torque lb-pulg			Capacida	Barreno Máximo	Peso			
Catálogo	Buna-N	Hytrel®	100	300	1200	1800	3600	Iviaximo	lb
MS050	37.3	112	.06	.18	.71	1.0	2.1	%	.13
MS070	59.4	178	.09	.28	1.1	1.7	3.4	3/4	.25
MS075	157	471	.25	.75	3.0	4.5	8.9	%	.44
MS090	24	723	.38	1.1	4.6	6.9	13.7	1%	.69
MS095	241	723	.38	1.1	4.6	6.9	13.7	1%	.84
MS099	512	1536	.81	2.4	9.7	14.6	29.2	1%	1.19
MS100	512	1536	.81	2.4	9.7	14.6	29.2	1%	1.47
MS110	1014	3042	1.6	4.8	19.3	28.9	57.8	1%	3.20
MS150	1630	4890	2.6	7.7	31.0	46.5	93.0	1%	4.50
MS190	2450	7350	3.9	11.6	46.6	69.9	139.7	2%	8.25
MS225	2920	8760	4.6	13.9	55.5	83.2	166.5	25%	12.00

NOTA: Las capacidades de potencia indicadas en esta tabla corresponden al elemento de Buna-N con Factor de Servicio de uno. Cuando utilice el elemento de Hytrel multiplique la capacidad por tres.

Coples de Mordaza en Existencia

Dimensiones

			Distancia	Largo	Bar	reno	_
Número de Catálogo	Diámetro de Maza A	Largo Total B	Entre Mazas C	de Barreno D	Mín.	Máx.	Peso (lb)
ML035	%	13/16	% 2	17/64	1/6	3/6	.07
ML o MS050	11/16	123/32	15/32	5/8	1/4	5%	.13
ML o MS070	1%	2	1/2	3/4	1/4	3/4	.25
ML o MS075	1%	2%	1/2	13/16	1/4	7/8	.44
ML o MS090	2%	2%	1/2	13/16	1/4	11%	.69
ML o MS095	2%	2½	1/2	1	7/16	1%	.84
ML o MS099	213/32	2%	3/4	11/16	1/2	1%	1.19
ML o MS100	217/32	3½	3/4	1%	1/2	1%	1.47
ML o MS110	35/16	4¼	%	1 11/16	1/2	1%	3.20
ML o MS150	3¾	4½	1	1¾	%	1%	4.50
ML o MS190	4½	4%	1	1 15/16	3/4	21/8	8.25
ML o MS225	5	5%	1	23/16	3/4	2%	12.00

Los barrenos son estándar en incrementos de 1/16" entre el barreno mínimo y el máximo, tienen cuñero y opresor excepto en los barrenos indicados a continuación:

Barrenos de 1/8" a 3/8" – Sin cuñero – sin opresor

050 – Barrenos de ⁷/₁₆" a ⁵/₈" – Sin cuñero – 1 opresor # 070, 075, 090, 095 – Barrenos de ⁷/₁₆" a ¹/₂" – Sin cuñero – 1 opresor

099, 100,110 – Barreno de $^1/_2$ " – Sin cuñero- Sin opresor # 150 – Barreno de $^5/_8$ " – Sin cuñero – Sin opresor

#190, 225 - Barreno de 3/4" - Sin cuñero - Sin opresor

NOTA: Todos estos coples se pueden suministrar en barreno piloto (sin cuñero ni opresores) para hacer barrenados especiales (ranurados, hexagonales, métricos, de diversas formas y

Para tamaños de cuñeros estándar, consulte el Catálogo Martin pág. E-158 y E-159.

Tabla de Selección de Coples para Armazones de Motor de 60 HZ NEMA. Basados en Elemento de BUNA-N (Hule) ★↑

				Cap	acidad Ma	íx. HP @ I	RPM	
Diámetro	Armazón	Tamaño de	1140		1725		3450	
de Eje	Nema	Cople	MS	ML	MS	ML	MS	ML
3/6	42	050	1/2	1/2	1	3/4	2	1½
1/2	48	050	1/2	1/2	1	3/4	2	1½
%	56,56 H	050	1/2	1/2	1	3/4	2	1½
3/4	66	070	1	3/4	1½	1	3	2
7∕8	56HZ, 143T, 145T	075	2	1	3	2	7½	3
	182, 184	090	3	2	5	3	10	7½
1%	182T, 184T, 213	095	3	3	5	5	10	10
	215	099	7½	5	10	7½	25	15
1%	213T, 215T, 245U, 256U	100	7½	7½	10	10	25	20
1%	254T, 256T, 248U, 286U	110	15	10	25	20	50	40
1%	284T, 286T, 324U, 326U, 326TS	150	30	20	40	30	75	60
21/8	324T, 326T, 364U, 365U	190	40	25	60	40	125	75
2%	364T, 365T	225	50	40	75	60	150	100

NOTA: Los tamaños de los coples se basan en su capacidad de torque, el barreno máximo que permiten y un factor de servicio de 1.0.

Elementos de Buna-N (Hule) y Hytrel

Número de	e Catálogo	Se Ajusta al	Peso Net	to en (lb)
Buna-N	Hytrel	Cople	Buna-N	Hytrel
SRL035	SHL035	ML035	.009	.009
SRL050	SHL050	M 050 — MS 050	.013	.013
SRL070	SHL070	ML070 — MS 070	.017	.017
SRL075	SHL075	ML075 — MS 075	.03	.03
SRL090	SHL090	ML o MS090-095	.04	.04
SRL099	SHL099	ML o MS099-100	.07	.07
SRL110	SHL110	ML110 — MS110	.14	.14
SRL150	SHL150	M150 — MS150	.21	.21
SRL190	SHL190	ML190 — MS190	.27	.27
SRL225	SHL225	ML225 — MS225	.41	.41

Los elementos de Uretano se encuentran disponibles. Por favor consulte a *Martin*.

Elementos de Uretano† y Bronce★

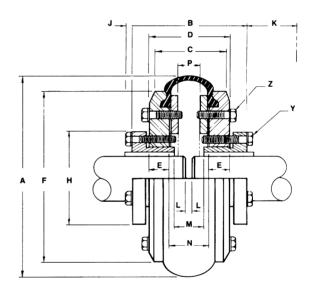
Número de	e Catálogo	Se Ajusta al	Peso Net	to en (lb)
Uretano	Bronce★	Cople	Uretano	Bronce
SUL035	SBL035	ML 035	.009	0.05
SUL050	SBL050	ML050 — MS050	.013	0.08
SUL070	SBL070	ML070 — MS070	.017	0.06
SUL075	SBL075	ML075 — MS075	.03	0.15
SUL090/ 095	SBL090/ 095	ML o MS 090-095	.04	0.17
SUL099/ 100	SBL099/ 100	ML o MS 099-100	.07	0.50
SUL110	SBL110	ML110 — MS110	.14	0.62
SUL150	SBL150	ML150 — MS150	.21	1.00
SUL190	SBL190	ML190 — MS190	.27	1.30
SUL225	SBL225	ML225 — MS225	.41	1.60

★Los elementos de Bronce se suministran sobre pedido.

Para Barrenos Métricos Consulte a Martin.

[★] Cuando utilice elementos de Hytrel o de Bronce multiplique los valores de esta tabla por 3.

[†] Cuando utilice elementos de Uretano multiplique los valores de esta tabla por 1.5.


Lista de Partes y Datos de Ingeniería

Tamaño	*Buje QD (2 por	Bridas de Acero (2 por Cople)		Elemento de Hule (1 por Cople)		RPM	HP a 100 RPM		que Servicio 1.0)	Torsión Estáti Coeficiente d	WR2** Aprox.	
de Cople	Cople)	No. de Maza	Peso c/u (lb)	No. de Elemento	Peso (lb)	Máx.	(F.S. 1.0)	lb-pulg	lb-pies	lb-pulg/grados	lb-pulg/rad	(lb-pies ²)
5	JA	F5JA	3.0	E5	.6	4500	1.03	649	54.1	244	12,850	.08
6	JA	F6JA	4.0	E6	.9	4000	1.80	1134	94.5	414	23,700	.22
7	SH	F7SH	7.0	E7	1.3	3600	3.12	1966	163.8	544	31,200	.40
8	SDS	F8SDS	8.0	E8	1.7	3100	4.68	2950	245.8	876	50,200	.70
9	SK	F9SK	13.0	E9	2.0	2800	6.90	4349	362.4	1088	62,400	1.33
10	SF	F10SF	17.0	E10	2.0	2600	8.33	5250	437.5	1530	87,700	2.10
11	SF	F11SF	18.0	E11	3.0	2300	9.92	6252	521.0	2420	138,700	2.90
12	E	F12E	31.0	E12	3.8	2100	14.40	9076	756.3	4014	217,000	5.80

Para las dimensiones de los bujes y de los barrenos vaya a la página B-4.

^{**} Cople más buje QD.
El elemento de hule también está disponible en Neopreno.

Dimensiones

												Υ	Tornillos de Cierre				
Tamaño de Cople	A	В	С	D	E	F	Н	J	K*	L	М	N	P	Diám. C.B.	Diám. C.B.	No. y Tamaño*** de Tornillo	Torque lb-pulg
5	5¼	31/16	21/16	2%6	%	4	2	5/32	11/4		17/16	1 %6	3%	1.66	21/16	(5) ¼ - 20 × 1½	125
6	6½	3%6	23/16	211/16	%	415/16	2	5/32	11/4		1%6	1 %6	1/2	1.66	35/16	(5) 5/6 - 18 × 11/8	200
7	7%	45/16	211/16	33/16	13/16	5%	211/16	7∕32	1%		1 11/16	1%6	3/4	21/4	3%	(5) ½ - 18 × 1½	300
8	8%	47/16	213/16	35/16	13/16	6½	3%6	7/32	1%		1 13/16	1 11/16	7/6	211/16	4%	(6) 5/6 - 18 × 1½	300
9	91/4	5¾6	37/16	315/16	11/16	7%	3%	%2	21/4		1 ½6	1 13/16	7/6	35/16	51/4	(6) % - 16 × 1%	400
10	10	513/16	3%6	41/16	11/16	85/16	4%	5/16	2¾		1%6	1%6	1	3%	6	(6) ¾ - 16 × 1¾	400
11	11	5%	3%	3%	11/16	9	4%	5/16	2¾		1%	1%	15/16	3%	6½	(6) % - 16 × 1¾	400
12	12%	71/4	4	4¾	1%	101/16	6	7∕16	3¼		11/4	11/4	3/4	5	71/4	(6) ½ - 13 × 2¼	900

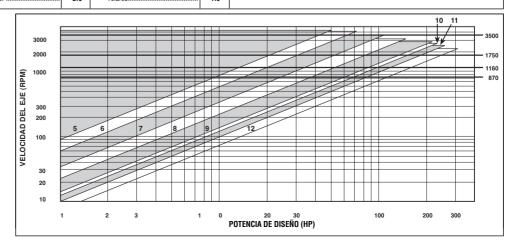
Dimensiones en pulgadas.

Otros Tamaños Disponibles Sobre Pedido

Espacio requerido para quitar el buje usando los tornillos como tornillos de extracción.
Los ejes se encuentran generalmente separados a estas distancias (M o N). Los ejes pueden proyectarse más allá de los bujes. En este caso se debe dejar espacio para el eje flotante y el desalineamiento. Grado 8.

Coples *Martin*-Flex®

Los coples flexibles **Martin**-Flex® transmiten suavemente la potencia al mismo tiempo que compensan desalineamientos angulares de hasta 4 grados, desalineamientos paralelos de ½" y de extremo flotante de máximo 5/16". Su diseño en dos bridas permite que su instalación sea rápida y sencilla. El elemento de hule amortigua los impactos y la vibración torsional en un amplio rango de temperaturas.


Procedimiento de Selección:

- 1. Seleccione el factor de servicio apropiado de la TABLA 1.
- 2. Determine la Potencia de Diseño (DHP) multiplicando la potencia del motor por el Factor de Servicio.
- 3. Ubique el tamaño del cople en la Gráfica 2 en la intersección de "Velocidad del Eje" con la "Potencia de Diseño".
- 4. Por cada cople debe ordenar: (2) bujes, (2) ensambles de mazas, (1) elemento flexible.

Tabla 1 Factores de Servicio

Aplicación	Factor	Aplicación	Factor	Aplicación	Factor	Aplicación	Factor	Aplicación	Factor
AGITADORES (Vert. u Horiz.) de		EJES EN LÍNEA		Prensa para abrir llantas y tubos	1.0	MAQUINARIA PARA ENLATADO	1.0	transmisión directa	2.5
Tornillo	1	Proceso Motriz		Refinador, para fabricar llantas,		MAQUINARIA PARA FORMAR		Con Reductor eje LS	
De paletas o de hélice		Ligeros	1	laminadora	2.0	METAL		Con Reductor eje HS	
BOMBAS		Maquinaria	1	Prensa para abrir llantas y tubos	1.0	Bancadas, Extrusoras.		Secadores y Enfriadores	
Centrífugas	1	ELEVADORES		INDUSTRIA MADERERA		Transmisión principal		De Rodillo, transmisión directa .	
De Engranes	1.5	De cangilones, de carga	2	Canteadora,		Estiradoras de alambre		Con Reductor eje LS	
Bombas para pozo petrolero (No		EQUIPO PARA DESECHO DE		Remolcador de Troncos	2.0	Fresadoras		Con Reductor eje HS	
más de 150% en picos de torque)	2	AGUAS RESIDUALES	1.0	Cepilladora	1.5	Transmisión principal	2.0	PALAS	. 2
Rotatorias (que no sean de		EXCITADORES	1.0	Rodillos no Reversibles	1.5	MAQUINARIA PARA TRABAJAR		PRENSAS DE IMPRESIÓN	1.5
engranes)	1.5	FILTROS PRENSA	1.5	Rodillos Reversibles	2.0	ARCILLA		PULVERIZADORES	
Reciprocantes		GENERADORES		Sierra de banda		Briqueteadoras,		Molino de Martillos- uso ligero	1.5
1 cil. – Accionamiento Sencillo	2.5	De carga uniforme	1	Sierra Circular	1.5	Mezclador de Arcilla,		Molino de Martillos- uso pesado	
1 cil Accionamiento Doble	2.0	Para servicio ferroviario	1.5	Transportador de aserrín	1.0	Prensas de Ladrillo	1.5	Molino de Rodillos	
2 cil. – Accionamiento Sencillo	2.0	Para soldadoras	2	Transportador de madera		MAQUINAS DE LAVANDERÍA	_	Molino Hog	2
2 cil. – Accionamiento Doble	1.5	GRÚAS Y POLIPASTOS		descortezada		Lavadoras y Secadoras	2	REMOLCADOR DE CARROS	1.5
3 cil. o más	1.5	Grúa Viajera		Mesas de clasificación	1.5	MAQUINAS HERRAMIENTAS		TRANSPORTADORES	
CABRESTANTES	1.5	Movimiento con troles	1.5	INDUSTRIA PAPELERA		Auxiliares	1.0	Apron, de Banda	
CARGADOR DE CARBÓN	1.0	Polipasto principal		Agitadores	1.0	Transmisión principal, Escoplo		De cadena, de rastras	
CLARIFICADORES	1.0	Servicio Mediano	1.5	Astilladores	3.0	Prensas, Cepillo (Reversible)		Helicoidales	
CLASIFICADORES	1.0	Polipasto principal	_	Blanqueador	1.0	Cepillo para placa		Reciprocantes	2.5
COMPRESORES	l	Servicio Pesado	. 2	Bombas		Punzonadora		TRITURADOR, DESMENUZADOR	1.5
De Lóbulos, Rotatorio	2.0	HÉLICES (marinas)	1.5	Reciprocantes	2.0	Rectificadora	1.0	TRITURADORAS	_
Reciprocante**	l	HORNO ROTATORIO	2.0	Rotatorias	1.5	MAQUINAS PARA TRABAJAR		De Caña de Azúcar	
1 cil. – Accionamiento Sencillo	3.5	INDUSTRIA ALIMENTARIA		Calandrias.	2.0	MADERA	1 1	Giratoria	2.5
1 cil Accionamiento Doble	3.0	Amasadoras	l	Embobinador	1.5	MECANISMO DE DIRECCIÓN	1	VENTILADORES	١.
2 cil. – Accionamiento Sencillo	3.0	Molinos de carne	1.5	Enristradoras, Cil. y secadores	1.5	MEZCLADORAS		Centrifugos	1
2 cil. – Accionamiento Doble	2.5	Cocedores de cereales	1	Estirador Felt	1.0	De Concreto (continuo o		De Hélice (Interiores)	
3 cil. o más – Accionamiento	2.5	Rebanador de Hortalizas	1.5	Fourdrinier	1.5	intermitente)	4.5	De Torre de enfriamiento	
Sencillo	2.5	INDUSTRIA DEL ACERO		Hidropulper	1.5	Tipo Muller- Simpson	1.5	Grandes (Para minas)	
3 cil. o más – Accionamiento	2.0	Laminado en frío		Jordan	2.0	MOLINOS (Rotatorios)	4.5	Ligeros	1
Doble	2.0	Embobinador (arriba o abajo)	1.5	Molino de pulpa	2.0	Barril de Pulido	1.5	VOLTEADOR DE CARROS	1.5
CRIBAS	١.,	Laminado en caliente		Prensas	2.0	De Bolas o de Guijarros,			
Para agua	1	Embobinador (arriba o abajo)		Rodillos de succión	2.0		 		
Para lavado de aire	1	Transmisión de cortador de orillas		Tambor de corteza	2.5 1.5			en esta tabla solo son para da	
Rotatórias para carbón o arena .	1.5 2.5	Molino de Rodillos	2.5	Tolvas de almacenamiento INDUSTRIA PETROLERA	1.0			motrices como motores eléc umentar a dichos factores 0.5	
Vibratorias	2.5	Rodillo de alimentación						no motores de combustión ir	
CRIBAS GRIZZLY Destilación y cervecerías	4	Laminado grueso (No reversible)	١.,	Bombas para pozo petrolero (No más de 150% en picos de		de 4 e más cilindros mete	roe do v	apor o turbinas de agua. Co	neulta
		Lámina, placa	3.0 2.0		2.0	a <i>Matin</i> cuando existan in	nnactos	substanciales, arrangues y	narns
Calderas y Cocedores Maceradores		Templado Transmisión De cubiertas de	2.0	torque) Enfriadores	2.U 1.0			Igunas transmisiones de av	
	1		3.0		1.5	lento v en algunas transm	nisiones	reversibles o en donde la u	inidad
Maquinaria de Embotellado Tolvas de Pesado	' '	Pozo de TempladoINDUSTRIA DEL HULE	3.0	Filtros prensa INDUSTRIA TÉXTIL	1.0	motriz sea un motor de co	mbustió	n interna de menos de 4 cilir	ndros.
	1.5		2.0	Calandrias, Cardas		Cuando haya vibracione	s torsio	nales como, por ejemplo, e	en los
Picos de Arranque Frecuente DINAMÓMETRO	1.5	Calandrias	1.5	Secadoras	1.5	motores de combustión in	terna, er	n los compresores reciprocai	ntes o
DRAGAS	'	Lavador	2.5	Centrífugas y Bastidores	1.5			eo, revise el cople ya que p	oodría
Apiladores, Malacate de Servicio		Mezclador Banbury	2.5	Dosificadores	1.0	dañarse debido a las vibra	ciones d	e gran amplitud.	
Transmisión para cribas y bombas	1.5	Molino Calentador	2.0	Lustradores, enjabonadoras	1.0				
Carrete para cable, Transportador	1.5	Molino Mezclador v Rompedor	2.0	Máquinas de Estampado	1.0		servicio	en 0.5 si el compresor no	tiene
Transmisión para cabeza de Corte		Plastificador	2.5		1.0	volante de inercia.			
rransinision para capeza de Corte	2.0	FIASIIIICAUUI	2.0	Telares	1.0				

Gráfica 2 Selección de Tamaño

